Enhancing the photocatalytic activity of TiO2 nanoparticles using green Carbon quantum dots

Document Type : Reasearch Paper


1 Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.

2 Laboratory of Constitution and Reaction of Matter, UFR SSMT, Université Felix Houphouet Boigny, 22 BP 582 Abidjan 22, Cote d’Ivoire.

3 Laboratory of Environmental Sciences and Technology, Université Jean Lorougnon Guédé, BP 150 Daloa, Cote d’Ivoire.

4 Shanghai Key Laboratory of Forensic Medicine (Academy of Forensic Science), Shanghai 200063, China.


A simple and green method based on chemical fragmentation of wood charcoal is used to produce carbon quantum dots (CQDs). These CQDs are used to form a nanocomposite with synthesized titanium dioxide nanoparticles (TiO2/CQDs). The X-ray diffraction (XRD) analysis of this TiO2/CQDs nanocomposite has revealed that the presence of CQDs in these TiO2/CQDs does not affect the TiO2 NPs crystalline structure; while the characterization using scanning electron microscopy (SEM) analysis shows a porous structure of TiO2 NPs and TiO2/CQDs resulting from the aggregation of nanoparticles with a mean size of around 25 nm and 30 nm for TiO2 NPs and TiO2/CQDs, respectively. Furthermore, a transmission electron microscopy (TEM) analysis displays particle size around 4 nm for CQDs. Besides, the reflectance study in the visible range shows that the presence of CQDs reduces the reflection of sunlight by TiO2 NPs in TiO2/CQDs nanocomposite. Moreover, compared to TiO2 NPs, TiO2/CQDs have a higher rate for methylene blue (MB) photocatalytic degradation. Indeed, an efficiency of up to 100% within ten minutes of sun exposure for the degradation of 7.5 mg/L MB can be achieved using TiO2/CQDs in opposition to thirty minutes using TiO2NPs under the same conditions. This efficiency is obviously due to the reduction of the reflective properties of TiO2 NPs in the visible range by the presence of CQDs in the TiO2/CQDs nanocomposite. These results suggest that TiO2/CQDs could be used as heterogeneous photocatalyst for the degradation of similar compounds in water bodies under solar irradiation.


[1]        Padhi B. S., (2012), Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int. J. Environ. Sci. 3: 940-955.
[2]        Pereira L., Alves M., (2012), Dyes—environmental impact and remediation. In  Environmental Protection Strategies for Sustainable Development. (pp. 111-162): Springer.
[3]        Martínez-Huitle C. A., Brillas E., (2009), Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B-Environ. 87: 105-145.
[4]        Gita S., Hussan A., Choudhury T., (2017), Impact of textile dyes waste on aquatic environments and its treatment. Environ. Ecol. 35: 2349-2353.
[5]        Lovato M. E., Fiasconaro M. L., Martín C. A., (2017), Degradation and toxicity depletion of RB19 anthraquinone dye in water by ozone-based technologies. Water Sci. Technol. 75: 813-822.
[6]        Xu C., Zhang B., Wang Y., Shao Q., Zhou W., Fan D., Bandstra J. Z., Shi Z., Tratnyek P. G., (2016), Effects of sulfidation, magnetization, and oxygenation on azo dye reduction by zerovalent iron. Environ. Sci. Technol. 50: 11879-11887.
[7]        Sansuk S., Srijaranai S., Srijaranai S., (2016), A new approach for removing anionic organic dyes from wastewater based on electrostatically driven assembly. Environ. Sci. Technol. 50: 6477-6484.
[8]        Khan R., Bhawana P., Fulekar M. H., (2013), Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Biotechnol. 12: 75-97.
[9]        Salgado P., Melin V., Durán Y., Mansilla H. C., Contreras D., (2017), The reactivity and reaction pathway of Fenton reactions driven by substituted 1, 2-dihydroxybenzenes. Environ. Sci. Technol. 51: 3687-3693.
[10]      Nair Sreekala G., Abdullakutty F., Beena B., (2019), Green synthesis, characterization, and photo catalytic degradation efficiency of Trimanganese Tetroxide nanoparticle. Int. J. Nano Dimens. 10: 400-409.
[11]      Golshan Tafti A., Rashidi A., Tayebi H.-A., Yazdanshenas M. E., (2018), Comparison of different kinetic models for adsorption of acid blue 62 as an environmental pollutant from aqueous solution onto mesoporous Silicate SBA-15 modified by Tannic acid. Int. J. Nano Dimens. 9: 79-88.
[12]      Fekri M. H., Bazvand R., Soleymani M., Razavi Mehr M., (2020), Adsorption of Metronidazole drug on the surface of nano fullerene C60 doped with Si, B and Al: A DFT study. Int. J. Nano Dimens. 11: 346-354.
[13]      Azari B., Pourahmad A., Sadeghi B., Mokhtary M., (2019), Preparation and photocatalytic study of SiO2/CuS coreshell nanomaterial for degradation of methylene blue dye. Nanoscale. 6: 103-114.
[14]      Hong N. H., (2019), Introduction to nanomaterials: basic properties, synthesis, and characterization. In  Nano-Sized Multifunctional Materials. (pp. 1-19). Seoul National University, South Korea: Elsevier.
[15]      Kumar S. G., Devi L. G., (2011), Review on modified TiO2 photocatalysis under UV/Visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A. 115: 13211-13241.
[16]      Hu X., Hu X., Tang C., Wen S., Wu X., Long J., Yang X., Wang H., Zhou L., (2017), Mechanisms underlying degradation pathways of microcystin-LR with doped TiO2 photocatalysis. Chem. Eng. J. 330: 355-371.
[17]      Chen X., Liu L., Huang F., (2015), Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44: 1861-1885.
[18]      Ioannidou E., Frontistis Z., Antonopoulou M., Venieri D., Konstantinou I., Kondarides D. I., Mantzavinos D., (2017), Solar photocatalytic degradation of sulfamethoxazole over tungsten–modified TiO2. Chem. Eng. J. 318: 143-152.
[19]      Espino-Estévez M., Fernández-Rodríguez C., González-Díaz O. M., Araña J., Espinós J., Ortega-Méndez J. A., Doña-Rodríguez J. M., (2016), Effect of TiO2–Pd and TiO2–Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chem. Eng. Sci. 298: 82-95.
[20]      Lim S. Y., Shen W., Gao Z., (2015), Carbon quantum dots and their applications. Chem. Soc. Rev. 44: 362-381.
[21]      Kushwaha N., Mittal J., Pandey S., Kumar R., (2018), High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots. Int. J. Nano Dimens. 9: 191-197.
[22]      Ding H., Yu S.-B., Wei J.-S., Xiong H.-M., (2016), Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 10: 484-491.
[23]      Kumar M. S., Yasoda K. Y., Kumaresan D., Kothurkar N. K., Batabyal S. K., (2018), TiO2-carbon quantum dots (CQD) nanohybrid: Enhanced photocatalytic activity. Mater. Res. Express. 5: 075502.
[24]      Shen J., Zhu Y., Yang X., Li C., (2012), Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48: 3686-3699.
[25]      Zhang Y., Yuan R., He M., Hu G., Jiang J., Xu T., Zhou L., Chen W., Xiang W., Liang X., (2017), Multicolour nitrogen-doped carbon dots: Tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale. 9: 17849-17858.
[26]      Guo Y., Zhang J., Zhou D., Dong S., (2018), Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation. J. Mol. Liq. 262: 194-203.
[27]      Zhang X., Wei W., Zhang S., Wen B., Su Z., (2019), Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance. Science China Mater. 62: 1888-1897.
[28]      Rani S., Borse P. H., Pareek A., Rajalakshmi N., Dhathathreyan K. S., (2016), Photo-Current enhancement in carbon quantum dots functionalized Titania nanotube arrays. J. Nanosc. Nanotechnol. 16: 5999-6004.
[29]      Thangaraj B., Solomon P. R., Ranganathan S., (2019), Synthesis of Carbon quantum dots with special reference to biomass as a source: A Review. Current Pharmac. Design. 25: 1455-1476.
[30]      Wang S., Zhu Z., Chang Y., Wang H., Yuan N., Li G., Yu D., Jiang Y., (2016), Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs with excellent color rendering properties. Nanotechnol. 27: 295202-295206.
[31]      Marchal C., Behr M., Vigneron F., Caps V., Keller V., (2016), Au/TiO2 photocatalysts prepared by solid grinding for artificial solar-light water splitting. New J. Chem. 40: 4428-4435.
[32]      Muthulingam S., Bae K. B., Khan R., Lee I.-H., Uthirakumar P., (2016), Carbon quantum dots decorated N-doped ZnO: Synthesis and enhanced photocatalytic activity on UV, visible and daylight sources with suppressed photocorrosion. J. Environ. Chem. Eng. 4: 1148-1155.
[33]      Sun W., Meng S., Zhang S., Zheng X., Ye X., Fu X., Chen S., (2018), Insight into the transfer mechanisms of photogenerated carriers for heterojunction photocatalysts with the analogous positions of valence band and conduction band: A case study of ZnO/TiO2. J. Phys. Chem. C. 122: 15409-15420.
[34]      Lin L., Zhang S., (2012), Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48: 10177-10179.
[35]      Kim D. S., Kwak S.-Y., (2007), The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A: Gen. 323: 110-118.
[36]      Martins N. C., Ângelo J., Girão A. V., Trindade T., Andrade L., Mendes A., (2016), N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B-Environ. 193: 67-74.
[37]      Yu X., Liu J., Yu Y., Zuo S., Li B., (2014), Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites. Carbon. 68: 718-724.
[38]      Khataee A., Sheydaei M., Hassani A., Taseidifar M., Karaca S., (2015), Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrason. Sonochem. 22: 404-411.
[39]      Daneshvar N., Salari D., Khataee A., (2003), Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters. J. Photochem. Photobiol. A Chem. 157: 111-116.
[40]      Silva C. G., Wang W., Faria J. L., (2006), Photocatalytic and photochemical degradation of mono- di-and tri-azo dyes in aqueous solution under UV irradiation. J. Photochem. Photobiol. A: Chem. 181: 314-324.
[41]      Gupta H., Tanaka S., (1995), Photocatalytic mineralisation of perchloroethylene using titanium dioxide. Water Sci. Technol. 31: 47-54.
[42]      Ateia M., Alalm M. G., Awfa D., Johnson M. S., Yoshimura C., (2020), Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: A critical review. Sci. Total Environ. 698: 134197-134202.
[43]      Garcia B. B., Lourinho G., Romano P., Brito P., (2020), Photocatalytic degradation of swine wastewater on aqueous TiO2 suspensions: Optimization and modeling via Box-Behnken design. Heliyon. 6: e03293-e03297.
[44]      Atchudan R., Edison T. N. J. I., Perumal S., Karthikeyan D., Lee Y. R., (2017), Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation J. Photochem. Photobiol. A: Chem. 333: 92-104.