Study of phosphorene nanoribbon for making nanotube selective gas sensor

Document Type : Reasearch Paper


Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.


Phosphorene nanoribbon (PNR) is a two-dimensional crystalline substance possessing semiconductor property, which makes it a new promising gas sensor. The gas sensing performance significantly depends on the adsorption mechanism and the strength of bonding between gas molecules and phosphorene atoms. Adsorption of a gas molecule onto PNR can be investigated through different parameters, such as interatomic energy, distance between atoms, and changes in the band gap energy of PNR. In this research, first, the PNR relaxation is carried out for minimum energy of whole structure. Second, the folding and tubing of PNR are investigated for their stability and minimum energy specification. Next, we constructed a phosphorene nanotube (PNT) by connecting two folded PNR that we called it unconventional PNT (UPNT). We compared conventional cylindrical PNT (CPNT) with UPNT for their energies and electrical properties. In the final step, as gas nanosensor, the gas sensing behavior and specifications of CPNT and UPNT are investigated in the presence of several gases. Since a phosphorene nanotube generally has a stable structure, the presence of gas molecules causes deformation of crystalline of structure and change in its electronic properties. For evaluating the sensing properties of CPNT and UPNT, their I-V characteristics, density of states and energy band diagrams are calculated and compared in the absence and presence of gas molecules. The adsorption of CO, , , NH, and  gas molecules onto UPNT and CPNT are done in detail. The results show that the sensitivity of UPNT gas sensor is higher than that of CPNT for detecting special gas molecules. We further investigated the amount of charge transfer utilizing the nonequilibrium Green’s function (NEGF) formalism which is applied on crystallized atomic configuration.


[1] Coleman  J. N., Lotya M., O’Neill A., Bergin Sh. D., King P. J., Khan U., Young  K., Gaucher A., De S., Smith R. J., Shvets I. V., Arora S. K., Stanton G., Kim H-Y., Lee K., Tae Kim G., Hallam T., Boland J. J., Wang J. J., Donegan J. F., Grunlan J. C., Moriarty  G., Shmeliov A., Nicholls R. J., Perkins J. M., Grieveson E. M., Theuwissen K., McComb D. W., Nellist P. D., Nicolosi V., (2011), Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 331: 568–571.
[2] Geim A. K., (2009), Graphene: Status and prospects. Science. 324: 1530–1534.
[3] Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. B. T., Ruoff R. S., (2006), Graphene-based composite materials. Nature. 442: 282–286.
[4] Yin X., Ye Z., Chenet D. A., Ye Y., O,Brien K., Hone J. C., Zhang X., (2014), Edge nonlinear optics on a MoS2 atomic monolayer. Science. 344: 488–490.
[5] Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A., (2011), Single-Layer MoS2 Transistors. Nat. Nanotechnol. 6: 147−150.
[6] Butler S. Z., Hollen S. M., Cao L., Cui Y., Gupta G. A., Gutierrez H. R., Heinz T. F., Hong S. S., Houang J., (2013), Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 7: 2898-2926. 
[7] Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., (2009), The electronic properties of graphene. Rev. Mod. Phys. 81: 109-162. 
[8] Wang Q. H., Kalantar-Zadeh K., Kis A., Coleman J. N., Strano M. S., (2012), Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7: 699-712.
[9] Sruthy P. C., Nagarajan V., Chandiramouli R., (2020), Interaction studies of kidney biomarker volatiles on black phosphorene nanoring: A first-principles investigation. J. Molec. Graph. Model. 97: 107-115.
[10] Liu H., Neal A. T, Zhu Z., Tománek D., Ye P. D., (2014), Phosphorene: An unexpected 2D semiconductor with a high hole mobility. ACS Nano. 8: 4033-4041.
[11] Reich E. S., (2014), Phosphorene excites materials scientists. Nature. 19: 506-517.
[12] Takao Y., Asahina H., Morita A., (1981), Electronic sructure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 50: 3362-3369. 
[13] Appalakondaiah S., Vaitheeswaran G., Lebègue S., Christensen N. E., Svane A., (2012), Effect of van der waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B. 86: 035105-035108.
[14] Lama K., Liangb G., (2008), An ab initio study on energy gap of bilayer graphene nanoribbons with armchair edges. Appl. Phys. Lett. 92: 223106-223110.
 [15] Dai J., Zeng X. C., (2014), Bilayer phosphorene: Effect of stacking order on bandgap and Its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5: 1289-1293.
[16] Kou L., Frauenheim T., Chen C., (2014), Phosphorene as a superior gas sensor: Selective adsorption and distinct I–V response. J. Phys. Chem. Lett. 5: 2675–2681.
[17] Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococcioni M., Dabo I., (2009), QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21: 395502-395508.
[18] Vanderbilt D., (1990), Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 41: 7892-7896.
[19] Perdrew J. P., Chevary J. A., Vosko S. H., Jacson K. A., Pederson M. R., Singh D. J., Fiolais C., (1992), Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46: 66-71.
[20] Ramasubramaniam A., (2010), Electronic structure of oxygen-terminated zigzag grapheme nanoribbos: A hybrid density functional theory study. Phys. Rev. B. 81: 25413-25416.
[21] Omidvar A., Mohajeri A., (2014), Edge functionalized graphene nanoflakes as selective gas sensor sensors and actuators. B: Chemical. 202: 622-630.
[22] Wang H.,   Li X., Li P., Yang J., (2017), Phosphorene: A two dimensional material with a highly negative Poisson's ratio. Nanoscale. 9: 850-855.
[23] Zhang Z., Cheng M-Qi ., Chen Q., Wu H-Yu., Hu W., Peng P., Huang G.F.,  Huang W.Q.,  (2019), Monolayer phosphorene–carbon nanotube heterostructures for photocatalysis: Analysis by density functional theory. Nanosc. Res. Lett.  14: Article number: 233 .
[24] Huang G., Xing Z. W., Xing D. Y., (2015), Prediction of superconductivity in Li-intercalated bilayer phosphorene. Appl. Phys. Lett. 106: 107-113.
[25] Han C. Q., Yao M. Y., Bai X. X., Miao L., Zhu F., Guan D. D., Wang Sh., Gao C. L., Liu C., Qian D., Liu Y., Jia J-F., (2014), Electronic structure of black phosphorus studied by angle-resolved photoemission spectroscopy. Phys. Rev. B. 90: 085101-085106.
[26] Monkhorst H. J., Pack J. D., (1976), Special points for brillouin-zone integrations. Phys. Rev. B. 13: 5188-5193.
[27] Gajdos M., Hummer K., Kresse G., Furthmuller J., Bechstedt F., (2006), Linear optical properties in the projector-augmented wave methodology.  Phys. Rev. B. 73: 045112-045118.
[28] Paier J., Marsman M., Kresse G., (2008), Dielectric properties and excitons for extended systems from hybrid functional. Phys. Rev. B. 78: 121-201.
[29] Brandbyge M., Mozos J. L., Ordejon P., Taylorand J., Stokbro K., (2002), Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65: 165401-165406.
[30] Aghdasi P., Ansari R., Rouhi S., Yousefi Sh., Goli M., Soleimani H. R., (2021), Investigating elastic and plastic characteristics of monolayer phosphorene under atomic adsorption by the density functional theory.  Phys. B: Cond. Matt. 600: 412603-412606.
[31] Topsakal M., Bagci V. M., Ciraci S., (2010), Current-voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys. Rev. B. 81: 205437-205442.