Fabrication of PCL-PEG-PCL nanocarrier for Co-loading of Docetaxel/Quercetin and assessment of its effect on growth inhibition of human liver cancer (Hep-G2) cell line

Document Type : Reasearch Paper


1 Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran, Iran.

2 Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.

3 Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran.

4 Department of Pharmacology & Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.


Nanoscale co-delivery systems are advanced examples of combination therapies that can provide better therapeutic performance. Here, we tried to improve the solubility, bioavailability, synergistic, and potentiation properties of docetaxel (DTX) using co-loading of DTX and quercetin (Qu) into PCL-PEG-PCL-based nanocarrier. To this end, PCL-PEG-PCL copolymer synthesized, then, DTX and DTX/Qu loaded into this nanocarrier, separately, by the nanoprecipitation-modified method. Physicochemical and biological properties of nanocarriers were assessed on human liver cancer (Hep-G2) and normal fibroblast cell lines, then, results were compared with free-DTX, free-Qu, and free-DTX/Qu groups. Based on the results, particles morphologically possessed a quasi-spherical shape with an average size of less than 200nm. Moreover, DTX/Qu-coloaded nanocarrier was led to further inhibition of Hep-G2 cells and lower inhibition of FNF cell viability, in a lower concentration (IC50: 29.35 µg/ml) than DTX-loaded nanocarrier (IC50: 36.73 µg/ml), free-DTX (IC50: 49.81 µg/ml), and free-DTX/Qu (IC50: 37.16 µg/ml). It could be due to the mixing of Qu and DTX that leads to an increase in the potentiation of DTX. The results also showed the release mechanism of Qu and DTX can be respectively diffusion (Fickian model) and a combination of dissolution and copolymer degradation (non-Fickian model). This was led to the higher inhibition of Hep-G2 at lower concentration of drug and higher antioxidant activity of DTX/Qu-co-loaded nanocarrier than other groups, at lower inhibition of FNF cell growth. Accordingly, the synthesized nanocarriers showed a more impact on the inhibition of cancer cells compared to normal cells, due to the synergistic effect and the created potentiation.


[1] Emami J., Kazemi M., Hasanzadeh F., Minaiyan M., Mirian M., Lavasanifar A., (2020), Novel pH-triggered biocompatible polymeric micelles based on heparin–α-tocopherol conjugate for intracellular delivery of docetaxel in breast cancer. Pharm Dev. Technol. 25: 492-509.
[2] Alibolandi M., Abnous K., Hadizadeh F., Taghdisi S. M., Alabdollah F., Mohammadi M., Ramezani M., (2016), Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinoma in vitro and in vivo. J. Control Release. 241: 45-56.
[3] Dadras P., Atyabi F., Irani S., Ma'mani L., Foroumadi A., Mirzaie Z. H., Dinarvand R., (2017), Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur. J. Pharm. Sci. 97: 47-54.
[4] Li J., Zhang J., Wang Y., Liang X., Wusiman Z., Yin Y., Shen Q., (2017), Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm. 523: 300-309.
[5] Hu Q., Rijcken C. J., Bansal R., Hennink W. E., Storm G., Prakash J., (2015), Complete regression of breast tumor with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials. 53: 370-378.
[6] Zafar S., Akhter S., Ahmad I., Hafeez Z., Rizvi M. M. A., Jain G. K., Ahmad F. J., (2020), Improved chemotherapeutic efficacy against resistant human breast cancer cells with co-delivery of Docetaxel and Thymoquinone by Chitosan Grafted Lipid nanocapsules: Formulation optimization, in vitro and in vivo studies. Colloids Surf. B. 186: 110603-110607.
[7] Raza K., Thotakura N., Kumar P., Joshi M., Bhushan S., Bhatia A., Katare O. P., (2015), C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm. 495: 551-559.
[8] Logie J., Ganesh A. N., Aman A. M., Al-Awar R. S., Shoichet M. S., (2017), Preclinical evaluation of taxane-binding peptide-modified polymeric micelles loaded with docetaxel in an orthotopic breast cancer mouse model. Biomaterials. 123: 39-47.
[9] Kushwah V., Katiyar S. S., Agrawal A. K., Gupta R. C., Jain S., (2018), Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine: Nanomedicine: NBM. 14: 1629-1641.
[10] Muthu M. S., Avinash Kulkarni S., Liu Y., Feng S. S., (2012), Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomed. J. 7: 353-364.
[11] Au K. M., Min Y., Tian X., Zhang L., Perello V., Caster J. M., Wang A. Z., (2015), Improving cancer chemoradiotherapy treatment by dual controlled release of wortmannin and docetaxel in polymeric nanoparticles. ACS Nano. 9: 8976-8996.
[12] Asadi N., Annabi N., Mostafavi E., Anzabi M., Khalilov R., Saghfi S., Akbarzadeh A., (2018), Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU. Artif Cells Nanomed Biotechnol. 46: 938-945.
[13] Abasian P., Ghanavati S., Rahebi S., Nouri Khorasani S., Khalili S., (2020), Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol. 31: 2939-2954.
[14] Tiwari G., Tiwari R., Sriwastawa B., Bhati L., Pandey S., Pandey P., Bannerjee S. K., (2012), Drug delivery systems: An updated review. Int. J. Pharm. Invest. 2: 2-8.
[15] Moretton M. A., Bernabeu E., Grotz E., Gonzalez L., Zubillaga M., Chiappetta D. A., (2017), A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells. Eur. J. Pharm. Biopharm. 114: 305-316.
[16] Gökçe Kocabay Ö., İsmail O., (2020), Preparation and optimization of biodegradable self-assembled PCL-PEG-PCL nano-sized micelles for drug delivery systems. Int. J. Polym. Mater. 1-10.
[17] Kheiri Manjili H., Sharafi A., Attari E., Danafar H., (2017), Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL–PEG–PCL copolymeric-based micelles. Artif. Cells Nanomed. Biotechnol. 45: 1728-1739.
[18] Stewart S. A., Domínguez-Robles J., Donnelly R. F., Larrañeta E., (2018), Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polym. J. 10: 1379-1384.
[19] Goonoo N., Jeetah R., Bhaw-Luximon A., Jhurry D., (2015), Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. Eur. J. Pharm. Biopharm. 97: 371-391.
[20] Odom E. B., Eisenberg D. L., Fox I. K., (2017), Difficult removal of subdermal contraceptive implants: A multidisciplinary approach involving a peripheral nerve expert. Contraception. 96: 89-95.
[21] Song Z., Feng R., Sun M., Guo C., Gao Y., Li L., Zhai G., (2011), Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J. Colloid Interf. Sci. 354: 116-123.
[22] Manjili H. K., Malvandi H., Mousavi M. S., Attari E., Danafar H., (2018), In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif. Cells Nanomed. Biotechnol. 46: 926-936.
[23] Feng R., Song Z., Zhai G., (2012), Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles. Int. J. Nanomedicine. 7: 4089-4093.
[24] Liu S., Qin S., He M., Zhou D., Qin Q., Wang H., (2020), Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Compos. B. Eng. 199: 108238-108243.
[25] Singh V., Tiwari M., (2010), Structure-processing-property relationship of poly (Glycolic Acid) for drug delivery systems: Synthesis and catalysis. Int. J. Polym. Sci.. 2010: Article ID 652719.
[26] Danafar H., Sharafi A., Kheiri Manjili H., Andalib S., (2017), Sulforaphane delivery using mPEG–PCL co-polymer nanoparticles to breast cancer cells. Pharm. Dev. Technol. 22: 642-651.
[27] Danafar H., (2016), Applications of copolymeric nanoparticles in drug delivery systems. Drug Res. 66: 506-519.
[28] Danafar H., (2017), Study of the composition of polycaprolactone/poly (ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles. Jundishapur J. Nat. Pharm. Prod. 12: e34179.
[29] Ramteke K. H., Dighe P. A., Kharat A. R., Patil S. V., (2014), Mathematical models of drug dissolution: A review. Sch. Acad. J. Pharm. 3: 388-396.
[30] Ritger P. L., Peppas N. A., (1987), A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control Release. 5: 37-42.
[31] Siepmann J., Peppas N. A., (2001), Mathematical modeling of controlled drug delivery. Adv. Drug Deliv. Rev. 48: 139-157.
[32] Bruschi M. L., (2015), Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing.
[33] Benzie I. F., Strain J. J., (1996), The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239: 70-76.
[34] Steinman N. Y., Bentolila N. Y., Domb A. J., (2020), Effect of molecular weight on gelling and viscoelastic properties of poly (caprolactone)–b-poly (ethylene glycol)–b-poly (caprolactone) (PCL–PEG–PCL) Hydrogels. Polym. J..12: 2372-2378.
[35] Masarudin M. J., Cutts S. M., Evison B. J., Phillips D. R., Pigram P. J., (2015), Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol. Sci. Appl. 8: 67-72.
[36] Bahadori F., Dag A., Durmaz H., Cakir N., Onyuksel H., Tunca U., Hizal G., (2014), Synthesis and characterization of biodegradable amphiphilic star and Y-shaped block copolymers as potential carriers for vinorelbine. Polym. J. 6: 214-242.
[37] Hu C., Chen Z., Wu S., Han Y., Wang H., Sun H., Zhu D., (2017), Micelle or polymersome formation by PCL-PEG-PCL copolymers as drug delivery systems. Chin. Chem. Lett. 28: 1905-1909.
[38] Dahmoune F., Rezgui F., G'Sell C., (2016), Full factorial design optimization of anti-inflammatory drug release by PCL–PEG–PCL microspheres. Mater. Sci. Eng. C. 58: 412-419.
[39] Choi H. S., Liu W., Misra P., Tanaka E., Zimmer J. P., Ipe B. I., Frangioni J. V., (2007), Renal clearance of quantum dots. Nat. Biotechnol. 25: 1165-1170.
[40] Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., Langer R., (2007), Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2: 751-760.
[41] Jahromi L. P., Ghazali M., Ashrafi H., Azadi A., (2020), A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon. 6: e03451.
[42] Dash S., Murthy P. N., Nath L., Chowdhury P., (2010), Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 67: 217-223.
[43] Zhou W., Li C., Wang Z., Zhang W., Liu J., (2016), Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement. J. Nanopart. Res. 18: 1-18.
[44] Ahmad Z., Shah A., Siddiq M., Kraatz H. B., (2014), Polymeric micelles as drug delivery vehicles. RSC Adv. 4: 17028-17038.
[45] Altintas R., Ciftci O., Aydin M., Akpolat N., Oguz F., Beytur A., (2015), Quercetin prevents docetaxel‐induced testicular damage in rats. Andrologia. 47: 248-256.
[46] Lu X., Yang F., Chen D., Zhao Q., Chen D., Ping H., Xing N., (2020), Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. Int. J. Biol. Sci. 16: 1121-1127.
[47] Shitole A. A., Sharma N., Giram P., Khandwekar A., Baruah M., Garnaik B., Koratkar S., (2020), LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C. 114: 111035-111039.
[48] Xu C., Ding Y., Ni J., Yin L., Zhou J., Yao J., (2016), Tumor-targeted docetaxel-loaded hyaluronic acid-quercetin polymeric micelles with p-gp inhibitory property for hepatic cancer therapy. RSC Adv. 6: 27542-27556.
[49] Gao X., Wang B., Wei X., Men K., Zheng F., Zhou Y., Wei Y., (2012), Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale. 4: 7021-7030.
[50] Wu T. H., Yen F. L., Lin L. T., Tsai T. R., Lin C. C., Cham T. M., (2008), Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int. J. Pharm.. 346: 160-168.
[51] Dueñas M., Surco-Laos F., González-Manzano S., González-Paramás A. M., Santos-Buelga C., (2011), Antioxidant properties of major metabolites of quercetin. Eur. Food Res. Technol. 232: 103-111.