Rapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites

Document Type: Reasearch Paper


1 Department of Chemistry, Thiruvalluvar University, Vellore – 632 115, India.

2 Department of Polymer Science, University of Madras, Guindy Campus, Chennai-600025, India.


In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reaction and the synthesized polymer as well as the Ag nanoparticles loaded composite were characterized using Fourier-transform infrared spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analysis. For accurate and rapid label-free electrochemical detection of pathogenic bacteria such as E.coliwas studied by spin coating the nanocomposite suspension into indium tin oxide electrode (ITO) followed by the immobilization of aminoterminated oligonucleotide (pDNA), as probe. The resultant pDNA/Ag-CFP/ITO biosensor was then used to detect ssDNA, cleaved from genomic DNA of E.coli, using differential pulse voltammetry (DPV) technique. Under optimal experimental conditions, the biosensor could detect ssDNA in a wide linear range from 1 × 10-15 M to 1 × 10-22 M with a lowest detection limit of 1 × 10-22 M.


[1]    Tarr P. I., Bilge S. S., Vary J. C. J., Jelacic S., Habeeb R. L., Ward T. R., Baylor M. R., Besser T. E., (2000), A novel Escherichia coli O157 : H7 adherence conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 68: 1400–1407.

[2]    Tang H., Zhang W., Geng P., Wang Q., Jin L., Wu Z., Lou M., (2006), A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor. Anal Chim. Acta. 562: 190–196.

[3]    Hatosy S. M., Martiny A. C., (2015), The ocean as a global reservoir of antibiotic resistance genes. Appl. Environm. Microbiol. 81: 7593–7599.

[4]    Moore D. F., Guzman J. A., Mc Gee C., (2008), Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. J. Appl. Microbiol. 105: 1017–1025.

[5]    Marti E., Jofre J., Balcazar J. L., (2013), Prevalence of antibiotic resistance genes and bacterial community composition in a river  influenced  by  a  wastewater  treatment  plant. PLoS One. 8: e78906.

[6]    Ronald J. A., Brena M., Melissa M., (2002), Antibiotic resistance of gram- negative bacteria in rivers, United States. Emerg. Infect. Dis. J. 8: 713–715.

[7]    Pang Y. C., Xi J. Y., Li G. Q., Shi X. J., Hu H. Y., (2015), Prevalence of antibiotic-resistant bacteria in a lake for the storage of reclaimed water before and after usage as cooling water. Environm. Sci: Proc. Impacts. 17: 1182–1189.

[8]    Rosas I., Salinas E., Martínez L., (2015), Characterization of Escherichia coli isolates from an urban lake receiving water from a wastewater treatment plant in Mexico city: fecal pollution and antibiotic resistance. Current Microbiol. 71: 490–495.

[9]    Blaak H., van Hoek A. H. A. M., Veenman C., (2014), Extended spectrum β- lactamase- and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. Int. J. Food Microbiol. 168: 8–16.

[10]   Rodriguez-Mozaz S., Chamorro S., Marti E., (2015), Occurrence of antibiotics and antibiotic resistance genes in hospital and urban waste waters and their impact on the receiving river. Water Res. 69: 234-242.

[11]   Figueras M. J., Borrego J. J., (2010), New perspectives in monitoring drinking water microbial quality. Int. J. Environ. 7: 4179-4202.

[12]   Shagun G., Vipan K., (2020), Development of environmental biosensors for detection, monitoring, and assessment. Nanomater. Environm. Biotechnol. 107-125.

[13]   Serdyukov D. S., Tatiana N., Goryachkovskaya I. A., Mescheryakova S. V., Bannikova S. A., Kuznetsov O. P., Cherkasova V. M. P., Sergey E. P., (2020), Study on the effects of terahertz radiation on gene networks of Escherichia coli by means of fluorescent biosensors. Biomed. Optics Express.11: 5258-5273.

[14]   Kumar M., Ghosh S., Nayak S., Das A., (2016), A recent advances in biosensor based diagnosis of urinary tract infection. Biosens. Bioelectron. 80: 497–510.

[15]   Azimzadeh M., Rahaie M., Nasirizadeh N., Daneshpour M., Naderi- Manesh H., (2017), Electrochemical miRNA biosensors: The benefits of nanotechnology. J Nanomed. Res. 2: 36–48.

[16]   KurunduHewage E. D., Spear D., Umstead T. M., Hu S., Wang M., Wong P. K., Chroneos Z. C.,  Halstead E. S., Thomas N. J.,  (2017), An electrochemical biosensor for  rapid detection of pediatric bloodstream infections. SLAS Technology (Translating Life Sciences Innovation). 22: 616–625.

[17]   Ma X., Jiang Y., Jia F., Yu Y., Chen J., Wang Z., (2014), An aptamerbased electrochemical biosensor for the detection of Salmonella. J. Microbiol. Methods. 98: 94–98.

[18]   Pernaut J. M., Reynolds J. R., (2000), Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B. 104: 4080–4090.

[19]   Park S. M., (1997), Electrochemistry of π-conjugated polymers. In Handbook of Organic Conductive Molecules and Polymers, UK, 3: 429–469.

[20]   Guiseppi-Elie A., Wallace G. G., Matsue T., (1998), Handbook of Conducting Polymers, 2nd ed. New York. NY. USA.963.

[21]   Kim Y. H., Lee J., Hofmann S., Gather M. C., Müller-Meskamp L., Leo K., (2013), Achieving high efficiency and improved stability in ITO free transparent organic light- emitting diodes with conductive polymer electrodes. Adv. Funct. Mater. 23:3763–3769.

[22]   Defieuw G., Samijn R., Hoogmartens L., Vanderzande D., Gelan J., (1993), Antistatic polymer layers based on poly(isothianaphthene) applied from aqueous compositions. Synth. Met. 57: 3702–3706.

[23]   Shen K. Y., Hu C. W., Chang L. C., Ho K. C., (2012), A complementary electrochromic device based on carbon nanotubes/conducting polymers. Sol. Energy Mater. Sol. Cells. 98: 294–299.

[24]   Mengistie D. A., Ibrahem M. A., Wang P. C., Chu C. W., (2014), Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl. Mater. Interfaces. 6: 2292–2299.

[25]   Baldissera A. F., Freitas D. B., Ferreira C. A., (2010), Electrochemical impedance spectroscopy investigation of chlorinated rubber-based coatings containing polyaniline as anticorrosion agent. Mater. Corros. 61: 790–801.

[26]   Rahman M.M., Li X. B., Jeon Y. D., Lee H. J., Lee S. J., Lee  J. J.,  (2012), Simultaneous determination of ranitidine and metronidazole at poly(thionine) modified anodized glassy carbon electrode. J. Electrochem. Sci. Technol. 2: 90–94.

[27]   Svirskis D., Travas-Sejdic J., Rodgers A., Garg S., (2010), Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release. 146: 6–15.

[28]   Leprince L., Dogimont A., Magnin D., Champagne S. D., (2010), Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J. Mater. Sci. Mater. Med. 21: 925–930.

[29]   Kim J. S., Friend R. H., Cacialli F., (1999), Electrochemical and luminescent properties of poly (fluorene) derivatives for optoelectronic applications. Appl. Phys. Lett. 74: 3084-3089.

[30]   Dhand C., Das M., Datta M., Malhotra B., (2011), Recent advances in polyaniline based biosensors. Biosens Bioelectron. 26: 2811–2821.

[31]   Daneshpour M., Izadi P., Omidfar K., (2016), Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron. 77: 1095– 1103.

[32]   Poonam V., Sanjiv Kumar M., (2019), Applications of Silver nanoparticles in diverse sectors. Int. J. Nano Dimens. 10:18-36.

[33]   Hadi B., Mohadeseh S., Somayeh T., (2019), Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review. Int. J. Nano Dimens. 10: 125-140.

[34]   Kwon O. S., Park S.J., Hong J. Y., Han A. R., Lee J. S., Oh J. H., Jang J., (2012), Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano. 6: 1486–1493.

[35]   Chen A., Chatterjee S., (2013), Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42: 5425-5438.

[36]   Saptarshi D., Kumar Das C., (2017), Silver nanoparticles decorated polypyrrole/graphene nanocomposite: a potential candidate for next-generation supercapacitor electrode material. J. Appl. Polym. Sci. 133: 44724.

[37]   Tahira A., MohdShahanbaj K., Hemalatha S., (2018), A facile and rapid method for green synthesis of Silver Myco nanoparticles using endophytic. Int. J. Nano Dimens. 9: 435-441.

[38]   Abdullah H., Mohammad Naim N., Azmy N. A. N., Abdul Hamid A., (2014), PANI- Ag-Cu Nanocomposite Thin Films Based Impedimetric Microbial Sensor for Detection of E. Coli Bacteria. Anal. Methods. 1 - 8.

[39]   Zheng W., He L., (2009), Label-free, real-time multiplexed DNA detection using fluorescent conjugated polymers. J. Am. Chem. Soc. 131: 3432–3433.

[40]   Kushon S. A., Ley K. D., Bradford K., Jones R. M., McBranch D., Whitten D., (2002), Detection of DNA hybridization via fluorescent polymer superquenching. Langmuir. 18: 7245-7249.

[41]   Suria M. S., Jaafar A., Suraya A. R., Yap W. F., Faridah S., Lau H. Y., (2020), A carbon dots based fluorescence sensing for the determination of Escherichia coli  O157 : H7. Measurement. 160: 107845-107852.

[42]   Miaolin D., Xiaoyue X., Yanmei H., Guoqiang L., Shan S., Xi L., Houde Z., Silu P., Chengwei L., Daofeng L., Weihua L., (2021), Immuno-HCR based on contact quenching and fluorescence resonance energy transfer for sensitive and low background detection of Escherichia coli O157 : H7.  Food Chem. 334: 127568-127573.

[43]   Srinivasan K., Thiruppathiraja C., Saroja V., Kamatchiammal S., (2014), Dual labeled Ag@SiO2 Core-Shell nanoparticles based optical immuno sensor for sensitive detection of E. coli. Mater. Sci. Eng. C. 45: 337-342.

[44]   Xiaoyan Z., Tingting W., Yuemeng Y., Yongqiang W., Shutao W., Li-Ping X., (2020), Superwettable electrochemical biosensor based on a dual-DNA walker strategy for sensitive E. coli O157 :  H7  DNA detection. Sens. Actuators B: Chem. 321: 128472-128479.

[45]   Maribel G., Guzmán H., Jean D., Stephan G., (2009), Synthesis of  silver  nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomolec. Eng. 2: 3-9.

[46]   Puthiaraj P., Kim S-S., Ahn W-S., (2015), Covalent triazine polymers using a cyanuricchlorideprecursor via Friedel-Crafts reaction for CO2 adsorption/separation. Chem. Eng. J. 11-15.

[47]   Niraimathi K. L., Sudha V., Lavanya R., Brindha P., (2013), Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surf. B: Biointerf. 102: 288-291.

[48]   Prakash P., Gnanaprakasam P., Emmanuel R., Arokiyaraj S., Saravanan M., (2013), Green synthesis of silver nanoparticles from leaf extract of Mimusopselengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surf. B: Biointerf. 108: 255-259.

[49]   Dubey S. P., Lahtinen M., Sillanpaa M., (2010), Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Proc. Biochem. 45: 1065-1071.

[50]   Priya A. M., Selvan R. K., Senthilkumar B., Satheeshkumar M. K., Sanjeeviraja C., (2011), Synthesis and characterization of CdWO4 nanocrystals. Ceram. Int. 7: 2485–2488.

[51]   Sharma A., Pandey C. M., Matharu Z., Soni U., Sapra S., Sumana G., Pandey M. K., Chatterjee T., Malhotra B. D., (2018),  Nanopatterned cadmium selenide Langmuir–Blodgett platform for leukemia detection. Anal. Chem.  84: 3082-3089.

[52]   Zhu N., Chang Z., He P., Fang F., (2016), Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim. Acta. 51: 3758-3762.

[53]   Pangajam A., Theyagarajan K., Dinakaran K., (2020), Highly sensitive electrochemical detection of E. coli O157 : H7 using conductive Carbon dot/ZnO nanorod/PANI composite electrode. Sensing and Biosens. Res. 29: 100317-100323.