Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation

Document Type: Reasearch Paper


Department of Chemical Engineering, JNTUACEA, Ananthapuramu-515002, India.


Herein, we report multi-element doped Type-II heterostructure assembly consists of N, S doped TiO2 and ZnO for electrochemical crystal violet dye degradation studies. Electrochemical measurements were performed on these synthesized N-S codoped TiO2/ZnO compositeheterostructured assemblies which are fabricated on Titanium (Ti) substrate. It was observed that a composite electrode (N, S-TiO2/ZnO@Ti) assembly has shown better efficiency metrics in comparison to all individual electrodes (bare Ti, TiO@Ti, ZnO@Ti) highlighting the importance of heterostructures. The findings of this article will help to design economic materials for complex dye molecule degradation studies as well as paves path towards better understanding of molecular mechanisms of dye degradation.


1. Prieto, O., Fermoso, J., Nunez, Y., Del Valle, J. L., andIrusta, R., (2005), Decolouration of textile dyes in wastewaters by photocatalysis with TiO2Sol Energy. 79: 376-383.

2. Hao, O. J., Kim, H., and Chiang, P. C., (2000),Decolorization of wastewater. Crit. Rev. Environ.SciTechnol, 30: 449-505.

3. Afkhami, A., andMoosavi, R., (2010), Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemitenanoparticles. J Hazard Mater. 174:398-403.

4. Eggen, R. I., Hollender, J., Joss, A., Schärer, M., andStamm, C., (2014),Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ. Sci. Technol. 48: 7683-7689.

5. Ahn, D. H., Chang, W. S., and Yoon, T. I., (1999), Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process Biochem. 34: 429-439.

6. El-Gohary, F. A., Abou-Elela, S. I., andAly, H. I., (1995), Evaluation of biological technologies for wastewater treatment in the pharmaceutical industry. Water Sci Technol. 32:13-20.

7. Comninellis, C., (1994),Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. ElectrochimActa.39: 1857-1862.

8. Martinez-Huitle, C. A., and Ferro, S., (2006),Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev. 35:1324-1340.

9. Panizza M., Bocca C., Cerisola G., (2000), Electrochemical treatment of wastewater containing polyaromatic organic pollutants. Water Res. 34: 2601-2605.

10. Chen G., (2004), Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38: 11-41.

11. Behara D. K., Palukuru P. S., Devangam A. V. P., (2020), N, S-codoped TiO2/Fe2O3 heterostructure assemblies for electrochemical degradation of crystal violet dye. Iran. J. Chem. Chem. Eng. 39: 171-180.

12. Behara D. K., Mukkara S. M., Jalajakshi T., (2019), TiO2/Fe2O3: Type-I heterostructures for electrochemical dye degradation/water splitting studies. J. Inst. Eng. India Ser. E. 100: 189-198.

13. Zhou M., Yu Q., Lei L., Barton G., (2007), Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Sep. Purif. Technol. 57: 380-387.

14. Chen C., Ma W., Zhao J., (2010), Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39: 4206-4219.

15. Behara D. K., Upadhyay A. P., Sharma G. P., Kiran B., Sivakumar S., Pala R. G. S., (2015), Heterostructures based on TiO2 and silicon for solar hydrogen generation. Adv. Func. Mater. 219-281.

16. Kamat P. V., (2008), Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C. 112: 18737-18753.

17. Nagaveni K., Hegde M. S., Ravishankar N., Subbanna G. N., Madras G., (2004), Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir. 20: 2900-2907.

18. Lee K. M., Lai C. W., Ngai K. S., Juan J. C., (2016), Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 88: 428-448.

19. Umebayashi T., Yamaki T., Itoh H., Asai K., (2002), Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81: 454-456.

20. Darzi S. J., Mahjoub A. R., Bayat A., (2016), Synthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst. Int. J. Nano Dimens. 7: 33-38.

21. Liu G., Yang H. G., Wang X., Cheng L., Pan J., Lu G. Q., Cheng H. M., (2009), Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 131: 12868-12869.

22. Devi L. G., Murthy B. N., Kumar S. G., (2010), Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: Influence of crystallite size and dopant electronic configuration on photocatalytic activity. Mater. Sci. Eng. B. 166: 1-6.

23. Horikawa T., Katoh M., Tomida T., (2008), Preparation and characterization of nitrogen-doped mesoporoustitania with high specific area. Microp. Mesop. Mater.110: 397-404.

24. Behara D. K., Ummireddi A. K., Aragonda V., Gupta P. K., Pala R. G. S., Sivakumar S., (2016),  Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction. Phys. Chem. Chem. Phys. 18: 8364-8377.

25. Behara D. K., Sharma G. P., Upadhyay A. P., Gyanprakash M., Pala R. G. S., Sivakumar S., (2016), Synchronization of charge carrier separation by tailoring the interface of Si–Au–TiO2heterostructures via click chemistry for PEC water splitting. Chem. Eng. Sci. 154: 150-169.

26. Xiao F. X., (2012), Construction of highly ordered ZnO–TiO2nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Appl. Mater. Interfaces. 4: 7055-7063.

27.  Zhang P., Shao C., Li X., Zhang M., Zhang X., Sun Y., Liu Y., (2012), In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnOnanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. J. Hazard Mater. 237: 331-338.

28. Guo S., Han S., Mao H., Dong S., Wu C., Jia L., Bo Ch., Li J., (2014), Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: The role of microporous amorphous/crystalline composite structure. J. Power Sourc. 245: 979-985.

29. Lei J. F., Li L. B., Shen X. H., Du K., Ni J., Liu C. J., Li W. S., (2013), Fabrication of ordered ZnO/TiO2 heterostructures via a templating technique. Langmuir. 29: 13975-13981.

30. Wang R., Tan H., Zhao Z., Zhang G., Song L., Dong W., Sun Z., (2014), Stable ZnO@TiO2 core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties. J. Mater. Chem. A. Mater. 2: 7313-7318.

31. Ghorbani, H. R., Parsa Mehr F., Pazoki H., Mosavar Rahmani B., (2015), Synthesis of ZnO nanoparticles by precipitation method. Orient. J. Chem. 31: 1219-1221.

32. Al Abdullah K., Awad S., Zaraket J., Salame C., (2017), Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature. Energy Procedia. 119: 565-570.

33. Wang C., Hu Q., Huang J., Wu L., Deng Z., Liu Z., Cao Y., (2013), Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film. Appl. Surf. Sci. 283: 188-192.

34. Yang G., Jiang Z., Shi H., Xiao T., Yan Z., (2010), Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20: 5301-5309.

35. Ivanov S., Barylyak A., Besaha K., Bund A., Bobitski Y., Wojnarowska-Nowak R., Yaremchuk I., Kus-Liśkiewicz M., (2016), Synthesis, characterization, and photocatalytic properties of sulfur-and carbon-codoped TiO2 nanoparticles. Nanoscale Res. Lett. 11: 140-147.

36. Gholipour M. R., Dinh C. T., Béland F., Do T. O., (2015), Nanocompositeheterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale. 7: 8187-8208.

37. Kim C., Kim J. T., Kim K. S., Jeong S., Kim H. Y., Han Y. S., (2009), Immobilization of TiO2 on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant. Electrochim. Acta. 54: 5715-5720.