Adsorption of Metronidazole drug on the surface of nano fullerene C60 doped with Si, B and Al: A DFT study

Document Type: Reasearch Paper


Department of Chemistry, Ayatollah Borujerdi University, Borujerd, Iran.


In this research, the quantum mechanics calculations were carried out to elucidate the adsorption behavior of metronidazole drug on the surface of pristine as well as doped C60 fullerene with Si, B and Al using density functional theory (DFT) at B3LYP/6-31G(d,p) level. After optimization of the structures, various parameters such as HOMO and LUMO energies, gap energy, adsorption energy, chemical hardness, chemical potential, dipole moment, electrophilicity index and thermodynamics data were calculated. The results showed that by substitution of the carbon atom in the C60 fullerene with Si, B and Al, the amounts of gap energy and chemical hardness are decreased, while those of chemical potential and electrophilicity index are increased. It means that the doping of C60 by Si, B and Al leads to an increase in drug reactivity. Also, the binding and stabilization energies are increased by doping of C60. The thermodynamic results suggested that substitution on the pristine C60 leads to a more negative in the value of the Gibbs energy and subsequent spontaneous process.


[1] Freeman C. D., Klutman N. E., Lamp K. C., (1997), Metronidazole. Drugs. 54: 679-708.

[2] Mirzaei M., (2013), Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound. Int. J. Nano Dimens. 1: 175-179.

[3] Faramarzi R., Falahati M., Mirzaei M., (2020), Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv. J. Sci. Eng. 30: 62-66.

[4] Mirzaei M., Gülseren O., Hadipour N., (2016), DFT explorations of quadrupole coupling constants for planar 5-fluorouracil pairs. Comput. Theor. Chem. 15: 67-73.

[5] Kouchaki A., Gülseren O., Hadipour N., Mirzaei M., (2016), Relaxations of fluorouracil tautomers by decorations of fullerene-like SiCs: DFT studies. Phys. Lett. A. 3: 2160-2166.

[6] Harismah K., Sadeghi M., Baniasadi R., Mirzaei M., (2017), Adsorption of vitamin C on a fullerene surface: DFT studies. J. Nanoanalysis. 4:1-7.

[7] Nikfar Z., Shariatinia Z., (2017), DFT computational study on the phosphate functionalized SWCNTs as efficient drug delivery systems for anti-osteoporosis zolendronate and risedronate drugs. Phys. E. 91: 41-59.

[8] Zhao L., Li H., Tan L., (2017), A Novel fullerene-based drug delivery system delivering Doxorubicin for potential lung cancer therapy. J. Nanosci. Nanotechnol. 17: 5147-5154.

[9] Zhang Q., Wu Z., Li N., Pu Y., Wang B., Zhang T., Tao J., (2017), Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. Mater. Sci. Eng: C. 77: 1363-1375.

[10] Kamel M., Raissi H., Morsali A., Shahabi, M., (2018), Assessment of the adsorption mechanism of Flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: An alternative theoretical approach based on DFT and MD. Appl. Surf. Sci. 434: 492-503.

[11] Zhang L., Peng G., Li J., Liang L., Kong Z., Wang H., Jia L., Wang X., Zhang W., Shen J. W., (2018), Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes. J. Mol. Liq. 262: 295-301.

[12] Hasanzade Z., Raissi H., (2018), Density functional theory calculations and molecular dynamics simulations of the adsorption of ellipticine anticancer drug on graphene oxide surface in aqueous medium as well as under controlled pH conditions. J. Mol. Liq. 255: 269-278.

[13] Shafiei F., Hashemianzadeh S. M., Bagheri Y., (2019), Insight into the encapsulation of gemcitabine into boron-nitride nanotubes and gold cluster triggered release: A molecular dynamics simulation. J. Mol. Liq. 278: 201-212.

[14] Ahmadi R., Pourkarim S., (2015), Investigation of fullerene (C60) effects on chemical properties of Metoprolol: A DFT study. Int. J. Bio-Inorg Hybrid Nanomater. 4: 249-254.

[15] Ahmadi R., Jalali Sarvestani M. R., Sadeghi B., (2018), Computational study of the fullerene effects on the properties of 16 different drugs: A review. Int. J. Nano Dimens. 9: 325-335.

[16] Hazrati M. K., Bagheri Z., Bodaghi A., (2017), Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies. Phys. E. 89: 72-76.

[17] Geng D., Yang S., Zhang Y., Yang J., Liu J., Li R., Sham T. K., Sun X., Ye S., Knights, S., (2011), Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257: 9193-9198.

[18] Khodadadei F., Safarian S., Ghanbari N., (2017), Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater. Sci. Eng: C. 79: 280-285.

[19] Fekri M. H., Omrani A., Jamehbozorgi S., Razavi Mehr M., (2019), Study of electrochemical and electronical properties on the some schiff base Ni complexes in DMSO solvent by computational methods. Adv. J. Chem. A. 2: 14-20.

[20] Naderi E., Mirzaei M., Saghaie L., Khodarahmi G. H., Gulseren O., (2017), Relaxations of methylpyridineone tautomers at the C60 surfaces: DFT studies. Int. J. Nano Dimens. 8: 124-131. 

[21] Mebi C. A., (2011), DFT study on structure, electronic properties and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. J. Chem. Sci. 123: 727-731.

[22] Rezaei-Sameti M., Ataeifar F., (2018), The theoretical study of adsorption HCN gas on the surface of pristine, Ge, P and GeP-doped (4, 4) armchair BNNTs.  Iran. Chem. Commun. 6: 280-292.

[23] Hasan M., Kumer A., Chakma U., (2020), Theoretical investigation of doping effect of Fe for SnWO4 in electronic structure and optical properties: DFT based first principle study. Adv. J. Chem. A.  3: 639-644.

[24] Nabati M., Bodaghi-Namileh V., (2020), Evaluation of medicinal effects of Isoxazole ring isosteres on zonisamide for autism treatment by binding to Potassium voltage-gated channel subfamily D member 2 (Kv 4.2). Adv. J. Chem. A. 3: 462-472.

[25] Nabati M., Bodaghi-Namileh V., (2020), Molecular modeling of 3-(1, 3-Dioxoisoindolin-2-yl) benzyl Nitrate and its molecular docking study with phosphodiesterase-5 (PDE5). Adv. J. Chem. A. 3: 58-69.

[26] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. JA., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., GAUSSIAN 09, Revision A.1, GAUSSIAN Inc,. Wallingford, CT., 2009.

[27] Ghasemi A. S., Ramezani Taghartapeh M., Soltani A.,  Peter J., (2019), Adsorption behavior of Metformin drug on boron nitride fullerenes: Thermodynamics and DFT studies. J. Mol. Liq. 275: 955–967.

[28] Ahmadi R., (2017), Study of thermodynamic parameters of (TATB) and its fullerene derivatives with different number of Carbon (C20, C24, C60) in different conditions of temperature, using density functional theory. Int. J. Nano Dimens. 8: 250-256.

[29] Ahmadi R., Boroushaki T., Ezatti M., (2015), The usage comparison parameters, gap band energy, ∆Nmax at Xylometazoline medicine ratio its medical conveyer nano. Int. J. Nano Dimens. 6: 19-22.