Biogenic synthesis of Copper nanoparticles using aquatic pteridophyte Marsilea quadrifolia Linn. rhizome and its antibacterial activity

Document Type: Reasearch Paper


1 Research Scholar (19212232262038), PG & Research Department of Botany, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Tirunelveli.

2 Research Scholar (18112232262009), PG & Research Department of Botany, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India, Affiliated to Manonmaniam Sundaranar University, Tirunelveli.

3 Ethnopharmacology Unit, PG & Research Department of Botany, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India.


The spread of contagious diseases and the increase in the drug resistance amongst pathogens has enforced the researchers to synthesize biologically active nanoparticles. Development of eco-friendly practice for the synthesis of nanoparticles is growing bit by bit in the field of nano-biotechnology. The present investigation outlines the development of a method to biosynthesize copper nanoparticles (CuNPs) by mixing copper chloride solution with aqueous rhizome extract of Marsilea quadrifolia.  The synthesized nanoparticles were characterized by using the UV-vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Atomic Force Microscope (AFM). The UV-vis spectra showed an absorption band at 324 nm. The FTIR measurement revealed the presence of all functional groups having control over reduction and stabilization of the nanoparticles. The SEM micrograph depicts the morphology of biogenically synthesized CuNPs with leaf like structure. The X- ray diffraction pattern confirmed the formation of crystalline nature of CuNPs with an average size of 25.20 nm. Regular gravel like structure of CuNPs was displayed in the AFM image. Additionally, the biosynthesized CuNPs were found to be extremely toxic against two gram positive bacterial strains Bacillus thuringiensis and Streptococcus faecalis.


[1] Nahar K., Aziz S., Beshar M. S., Haque Md. A., Al-Reza, S. Md., (2020), Synthesis and characterization of silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial activity. Int. J. Nano Dimens. 11: 88-98.

[2] Seku K., Ganapuram R. G., Pejjai B., Kotu, G. H., Narasimha G., (2018), Hydrothermal synthesis of copper nanoparticles characterization and their biological application. Int. J. Nano Dimens. 9: 7-14.

[3] Mohamed F., Yousefi M., Ghabremanzadeh R., (2019), Green synthesis, characterization and antimicrobial activity of silver nanoparticles (AgNPs) using leaves and stems extract of some plants. Adv. J. Chem. Sec. A. 2: 266-275.

[4] Tude S. C., Zubku M., Kusz J., Bhathacharjee A., (2020), Structural, morphological and optional characterization of green synthesized ZnS nanoparticles using Azadirachta indica (Neem) leaf extract. Int. J. Nano Dimens. 11: 99-111.

[5] Elisma N., Labanni A., Emriadi, Zrilda Y., Asorfi M., Arief S., (2019), Green synthesis of copper nanoparticles using Uncaria gambir Roxb. leaf extract and its characterization.  RASAYAN J. Chem. 12: 1752-1756.

[6] Amatya S. P., Joshi L. P., (2020), Biosynthesis of copper nanoparticle (CuNPs) using garlic extract to investigate antibacterial activity. BIBECHANA. 17: 13-19.

[7] Chandraker S. K., Lal M., Chosh M. K., Tiwari V., Ghorai T. K., Shukla R., (2020), Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill and study of their photocatalytic and antibacterial activities. Nano Exp. 1: 010033.

 [8] Nekrasova G. F., Ushakova O., Ermakov A. E., Uimim M. A., By Zov І. V., (2011), Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa planch. Russ. J. Ecol. 42: 458-463.

[9] Pullaiah T., (2002), Medicinal Plants of India, vol. 2 (Regency Publications, Jodhpur, India, 2002) pp. 348-349.

[10] Longman, O., (1997), Indian medicinal plants, vol. 4 (Orient Longman Pvt. Ltd., Chennai, India, 1997) pp. 5-9.

[11] Khare C. P., (2004), Encyclopedia of indian medicinal plants, rational western therapy, ayurvedic and other traditional uses, botany (Springer, London, 2004) p. 303.

[12] Brindha P., Sasikala P., Purushothaman K. K., (1981), Pharmacognostic studies on merugan kizhangu. Bull. Med. Eth. Bot. Res. 3: 84-96.

[13] Bauer A. W., Kiruby W. M., Sherris J. C., Turck M., (1996), Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 45: 493-496.

[14] Kheni R, Rosstaei B, Bagherzade G, Moudi M., (2011), Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd: Application for adsorption on triphenylmethane dye and antibacterial assy. J. Mol Liq. 255: 541-549.

[15] Heera P., Shanmugam S., Ramachandran J., (2015), Green synthesis of copper nanoparticle using Gymnema sylvestre by different solvent extract. Int. J. Curr. Res. Accd. Rw. 3: 268-275.

[16] Thiruvengadam M., Ehung I. M., Gomathi T., Anseri M. A., Khanna V. G., Babu V., Rajakumar G., (2019), Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles.  Bioprocess Biosyst. Eng. 42: 1769-1777.

[17] Gopinath M., Subbaiya R., Selvam M. M., Suresh D., (2014), Synthesis of copper nanoparticles from Nerium oleander leaf aqueous extract and its antibacterial activity. Int. J. Curr. Microbio. App. Sci. 3: 814-888.

[18] Rajeshkumar S., Menon S., Kumar S. V., Tambuwala, M. M., Bakshi H. A., Mehta M., Satijia S., Gupta G., Chellappan D. K., (2019), Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J. Photochem. Photobiol. 197: 111531.

[19] Elumalai K., Velmurugen S., Ravi S., Kathiravan S., Ashok Kumar S., (2015), Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A. 143: 158-164.

[20] Chandran S. P., Chaudary M., Pasricha R., Ahamad A., Sastry M., (2006), Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22: 577-583.

[21] Aromal S. A., Vidhu V., Philip D., (2012), Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniforum. Spetrochim. Acta Mol. Biomol. Spectrosc. 85: 94-104.

[22] Khalil M. M., Ismail E. H., Magdoub E. I. F., (2012), Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab. J. Chem. 5: 431-437.

[23] Ramyadevi J., Jeyasubramanian K., Marikani A., Rajakumar G., Rahuman A. A., (2012), Synthesis and antimicrobial activity of copper nanoparticles. Mar. Left. 71: 114-116.

[24] Ren G., Hu D., Chang E. W., Vangas-Reus M. A., Reio P., Allakar R. P., (2009), characterization of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents. 33: 587-590.

[25] Sankar R., Manikandan P., Malarvizhi V., Fathima T., Shivashangari K. S., Rajkumar V., (2014), Green synthesis of colloidal copper oxide nanoparticles using  Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta Mol. Biomol. Spectrosc. 121: 746-750.

[26] Yallappa S., Manjanna J., Simdhe M. A., Sathyanarayan N. D., Pramod S. N., Nagara K., (2013), Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract Spectrochim Acta Mol. Biomol. Spectrosc. 110: 108-105.

[27] Chung I. M., Rahuman A. A., Marimuthu S., Kirthi A. V., Anbarasan K., Padmini P., Rajakumar G., (2017), Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Therap. Med. 14: 18-24.