Biosynthesis of Cu and CuO nanoparticles using aqueous leaves extract of Sambucus nigra L.

Document Type: Short Communication


Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.


In this research we are synthesized CuO nanoparticles (NPs) using water extract of. Also the total phenolic content of Sambucusnigra L. leaves water extract was measured by the Folin-Ciocalteu method. For confirmation the structure of synthesized bio-CuO-NPs we are employed X-ray Diffraction (XRD), Ultraviolet-visible (UV–vis), Fourier Transform Infrared (FTIR) spectroscopies, Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM) methods that indicated that synthesized bio-CuO NPs have crystalline face-centered cubic (fcc) CuO phase with spherical morphology and with size about 14 nm. It should be mentioned that two different temperatures (100 and 400 o C) caused to Cu and CuO NPs respectively.


[1] Fatah A. F., Hamid N. A., (2018), Physical and chemical properties of LSCF-CuO as potential cathode for intermediate temperature solid oxide fuel cell (IT-SOFC). Malays. J. Fundam. Appl. Sci. 14: 391–396.

[2] Asemani M., Anarjan N., (2019), Green synthesis of copper oxide nanoparticles using Juglans regia leaf extract and assessment of their physico-chemical and biological properties. Green Process. Synth. 8: 557-567.

[3] Adewale Akintelu S., Similoluwa Folorunso A., Adekunle Folorunso F., Kolawole Oyebamiji A., (2020), Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon. 6: e04508.

[4] Sravanthi M., Muni Kumar D., Usha B., Ravichandra M., Mahendra Rao M., Hemalatha K. P. J., (2016), Biological synthesis and characterization of copper oxide nanoparticles using Antigonon leptopus leaf extract and their antibacterial activity. Int. J. Adv. Res.4: 589-602.

[5] Mohammadlou M., Maghsoudi H., Jafarizadeh-Malmiri H., (2016), A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int. Food Res. J.  23: 446-463.

[6] Mohammadlou M., Jafarizadeh-Malmiri H., Maghsoudi H., (2017), Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity. Green Process. Synth. 6: 31-42.

[7] Eskandari-Nojehdehi M., Jafarizadeh-Malmiri H., RahbarShahrouzi J., (2016), Optimization of processing parameters in green synthesis of gold nanoparticles using microwave and edible mushroom (Agaricus bisporus) extract and evaluation of their antibacterial activity. Nanotechnol. Rev.5: 537-548.

[8] Fardsadegh B., Vaghari H., Mohammad-Jafari R., Najian Y., Jafarizadeh-Malmiri H., (2019), Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Process. Synth. 8: 191-198.

[9] Sutradhar P., Saha M., Maiti D., (2014), Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem.4: 86-91.

[10] Mallick P., Sahu S., (2012), Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol-gel route. Nanosci. Nanotechnol. 2: 71–74.

[11] Zoolfakar A. S., Rani R. A., Morfa A. J., O’Mullane A. P., Kalantar-zadeh K., (2014), Nanostructured copper oxide semiconductors: A perspective on materials, synthesismethods and applications. J. Mater. Chem. C. 2: 5247–5270.

[12] Zhu H. T., Zhang C. Y., Tang Y. M., Wang J. X., (2007), Novel synthesis and thermal conductivity of CuO nanofluid. J. Phys. Chem. C. 111: 1646–1650.

[13] Sharma J. K., Akhtar M. S., Ameen S., Srivastava P., Singh G., (2015), Green synthesis of CuO nanoparticles with leaf extract of Calotropisgigantea and its dye-sensitizedsolar cells applications. J. Alloys Compd. 632: 321–325.

[14] Wang L., Tang K., Zhang M., Zhang X., Xu J., (2014), Facile synthesis of CuO nanoparticles as anode for lithium ion batteries with enhanced performance. Funct. Mater. Lett. 7: 1–3.

[15] Davarpanah  S. J., Karimian R., Goodarzi V., Piri F., (2015), Synthesis of copper (II) oxide (CuO) nanoparticles and its application as gas sensor. J. Appl. Biotechnol. Rep. 2: 329–332.

[16] Wang X., Hu C., Liu H., Du G., He  X., Xi  Y., (2010), Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B Chem. 144: 220–225.

[17] Sundar S., Venkatachalam G., Kwon S. J., (2018), Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials. 8: 1–17.

[18] Sankar R., Manikandan P., Malarvizhi V., Fathima T., Shivashangari K. S., Ravikumar  V., (2014), Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 121: 746–750.

[19] Norzaee S., Djahed  B., Khaksefidi R., Mostafapour F. K., (2017), Photocatalytic degradation of aniline in water using CuO nanoparticles. J. Water Supply Res. Technol. 66: 178–185.

[20] Azam A., Ahmed A. S., Oves M., Khan M. S., Memic A., (2012), Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterialstrains. Int. J. Nanomedicine. 7: 3527–3535.

[21] Ayoman E., Hosseini S. G., (2016), Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decompositionof ammonium perchlorate particles. J. Therm. Anal. Calorim. 123: 1213–1224.

[22] Abdulateef S. A., MatJafri M. Z., Omar A.F., Ahmed N.M., Azzez S. A., Ibrahim I. M., Al-Jumaili B. E. B., (2016), AIP publishing, preparation of CuO nanoparticles by laser ablation in liquid: AIP Conference Proceed. 1733: 1–5.

[23] Outokesh M., Hosseinpour M., Ahmadi S. J., Mousavand T., Sadjadi S., Soltanian W., (2011), Hydrothermal synthesis of CuO nanoparticles: study on effects of operationalconditions on yield, purity, and size of the nanoparticles.Ind. Eng. Chem. Res. 50: 3540–3554.

[24] Hong Z.-S., Cao Y., Deng J., (2002), A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater. Lett. 52: 34–38.

[25] Wang H., Xu J.-Z., Zhu,J.-J., Chen H.-Y., (2002), Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth. 244: 88–94.

[26] Dhineshbabu N. R., Rajendran V., Nithyavathy N., Vetumperumal R., (2016), Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 6: 933–939.

[27] Phiwdang K., Suphankij S., Mekprasart W., Pecharapa W., (2013), Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia. 34: 740–745.

[28] Mohammed W. M., Mubark T. H., Al-Haddad R. M. S., (2018), Effect of CuO nanoparticles on antimicrobial activity prepared by sol-gel method. Int. J. Appl. Eng. Res. Dev. 13: 10559–10562.

[29] Dighore Jadhav N. S., Gaikwad S., Rajbhoj A., (2016), Copper oxide nanoparticles synthesis by electrochemical method. Mater. Sci. (Medžiagotyra). 22: 170–173.

[30] Li X., Xu H., Chen Z.-S., Chen G., (2011), Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomaterials. 2011: 1–16.

[31] Ghorbani H. R., Fazeli I., Fallahi A. A., (2015), Biosynthesis of copper oxide nanoparticles using extract of E. coli. Orient J. Chem. 31: 515–517.

[32] Gunalan S., Sivaraj R., Venckatesh R., (2012), Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 97: 1140–1144.

[33] Nasrollahzadeh M., Sajadi S. M., Rostami-Vartooni  A., Hussin S. M., (2016), Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves andtheir catalytic performance for N-arylation of indoles and amines. J. Colloid Interface Sci. 466: 113–119.

[34] Maqbool Iftikhar Q. S., Nazar M., Abbas F., Saleem A., Hussain T., Kausar R., Anwaar S., Jabeen N., (2017), Green fabricated CuO nanobullets via Thymus vulgaris leaf extract shows auspicious antimicrobial potential. IET Nanobiotechnol. 11: 463–468.

[35] Aminuzzaman M., Kei L. M., Liang W. H., (2017), Green synthesis of copper oxide (CuO) nanoparticles using banana peel extract and their photocatalytic activities. AIP Conference Proceed. 1828: 1–5.

[36] Abboud Y., Saffaj T., Chagraoui A., El Bouari A., Brouzi K., Tanane O., Ihssane B., (2014), Biosynthesis, characterization and antimicrobial activity of copper oxidenanoparticles (CONPs) produced using brown algae extract (Bifurcaria bifurcata). Appl. Nanosci. 4: 571–576.

[37] Weldegebrieal G. K., (2020), Photocatalytic and antibacterial activity of CuO nanoparticles biosynthesized using Verbascumthapsus leaves extract. Optik. 204: 164230.

[38] Ghasemi N., Jamali-Sheini  RoyaZekavati F., (2017), Eco-friendly Green and biosynthesis of Copper Oxide nanoparticles using Citrofortunellamicrocarpa Leaves extract for efficient photocatalytic degradation of rhodamin B dye form textile wastewater.196: 78-82.

[39] Charlebois D., Byers P. L., Finn  C. E., Thomas L. A., (1995), Elderberry: Botany, Horticulture, Potential. John Wiley & Sons.

[40] Ochmian I., Oszmianski J., Skupien K., (2009), Chemical composition, phenolics, and firmness of small black fruits. J. Appl. Bot. Food Qual. 83: 64-69.

[41] Bryła A., Lewandowicz G., Juzwa W., (2015), Encapsulation of elderberry extract into phospholipid nanoparticles. J. Food Eng. 167: 189-195.

[42] Hajinasiri R., Norozi B., Ebrahimzadeh H., (2016), Biosynthesis of ZnO nanoparticles using corn silk of zea mays L. extract. Chem. Lett. 45: 1238-1240.

[43] Hajinasiri R., Esmaeili Jadidi M., (2020), Synthesis of ZnO nanoparticles via flaxseed aqueous extract. Iran. Chem. Commun. 8: 102-108.

[44] Sutradhar P., Saha M., Maiti D., (2014), Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J. Nanostruct. Chem. 4: 1–6.

[45] Nasrollahzadeh M., Maham M., Sajadi S. M., (2015), Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstitutedureas and reduction of 4-nitrophenol. J. Colloid. Interface Sci. 455: 245-253.

[46] Riaz M., Zia-Ul-Haq M., Jaafar H. Z. E., (2013), Common mullein, pharmacological and chemical aspects. Rev. Bras. Farmacogn. 23: 948–959.

[47] Topnani N., Kushwaha Athar S. T., (2010), Wet synthesis of copper oxide nanopowder. Int. J. Green Nanotechnol. Mater. Sci. Eng. 1: M67–M73.

[48] Xia J., Li H., Luo Z., Shi H., Wang K., Shu H., Yan Y., (2009), Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. J. Phys. Chem. Solids. 70: 1461-1466.

[49] Padil V. V. T., Cernik M., (2013), Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine. 8: 889-898.

[50] Sharma J. K., Akhtar M. S., Ameenc S., Srivastava P., Singh G., (2015), Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloy. Compd. 632: 321-325.

[51] Nasrollahzadeh M., Sajadi S. M., Rostami-Vartooni A., (2015), Green synthesis of CuO nanoparticles by aqueous extract of Anthemis nobilis flowers and their catalytic activity for the A3 coupling reaction. J. Colloid. Interface Sci. 459: 183-188.

[52] Vijayashree K., Rai K. S., Demappa T., (2016), Synthesis of nanosized copper oxide by assimilating microwave radiation and its characterizations. Indian J. Adv. Chem. Sci. S1: 6–9.

[53] Sabbaghan M., Shahvelayati A. S., Banihashem S., (2016), Green synthesis of symmetrical imidazolium based ionic liquids and their application in the preparation of ZnO nanostructures. Ceram. Int. 42: 3820-3825.

[54] Fragala M. E., Aleeva Y., Malandrino G., (2011), Effects of Metal-Organic chemical vapour deposition grown seed layer on the fabrication of well aligned ZnO nanorods by chemical bath deposition. Thin Solid Films. 519: 7694-7701.

[55] Mageshwari K., Sathyamoorthy R., (2013), Organic free synthesis of flower-like hierarchical CuO microspheres by reflux condensation approach. Appl. Nanosci. 3: 161–166.