Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

Document Type: Reasearch Paper

Authors

1 Department of Nanoelectronics, Nanoscience and Nanotechnology Research Center, University of Kashan, Kashan, Iran.

2 Department of Electronics, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan 87317-51167, Iran.

Abstract

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an anti-reflection coating layer on top, which increase the light absorption in the solar cell. The enhancement of light trapping was observed in the proposed configuration of the solar cell with an 1000 nm thick InP absorption layer, which improved the short-circuit current density and efficiency. The highest short-circuit current density and efficiency were determined 32.07 mA/cm2 and 26.6%, respectively, for the nanowire radiuses of R1=50 nm and R2= 120 nm. Therefore, this structure improves the ultimate efficiency of 38% compared with the InP-based solar cells counterparts.

Keywords


[1]           Cai T., Han S. E., (2015), Effect of symmetry in periodic nanostructures on light trapping in thin film solar cells. JOSA B. 32: 2264-2270.

[2]           Girigoswami K., Akhtar N., (2019), Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nano Dimens. 10: 1-17.

[3]           Anderson T. H., Benjamin J. C., Peter B. M., Akhlesh L., (2020), Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells. J. Comput. Phys. 407: 109242.

[4]           Miao X., Tongay S., Petterson M. K., Berke K., Rinzler A. G., Appleton B. R., Hebard A. F., (2012), High efficiency graphene solar cells by chemical doping. Nano Lett. 12: 2745-2750.

[5]           Wang F., Yuhong Z., Meifang Y., Lin F., Lili Y., Yingrui S., Jinghai Y., Xiaodan Z., (2019), Toward ultra-thin and omnidirectional perovskite solar cells: Concurrent improvement in conversion efficiency by employing light-trapping and recrystallizing treatment. Nano Energy. 60: 198-204.

[6]           Shi L., Zhou Z., Tang B., (2014), Optimization of Si solar cells with full band optical absorption increased in all polarizations using plasmonic backcontact grating. Opt. Int. J. Light and Electron Optic. 125: 789-794.

[7]           Sethi V., Pandey M., Shukla M. P., (2011), Use of nanotechnology in solar PV cell. Int. J. Chem. Eng. Appl. 2: 77-83.

[8]           Catchpole K., Polman A., (2008), Plasmonic solar cells. Optics Express. 16: 21793-21800.

[9]           Haidari G., Hajimahmoodzadeh M., Fallah H. R., Varnamkhasti M. G., (2015), Effective medium analysis of thermally evaporated Ag nanoparticle films for plasmonic enhancement in organic solar cell. Superlatt. Microstruc. 85: 294-304.

[10]         Sagadevan S., Pandurangan K., (2015), Investigations on structural and electrical properties of Cadmium Zinc Sulfide thin films. Int. J. Nano Dimens. 6: 433-438.

[11]         Biswas R., Bhattacharya J., Lewis B., Chakravarty N., Dalal V., (2010), Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector. Solar Energy Mater. Solar Cells. 94: 2337-2342.

[12]         Biswas R., Zhou D., (2008), Improved photon absorption in a-Si : H solar cells using photonic crystal architectures, (Cambridge Univ Press), 1066: A14-04.

[13]         Ghosh D., Ghosh B., Hussain S., Chakraborty B., Sehgal G., Bhar R., Pal A., (2014), Improvement on the performance of InP/CdS solar cells with the inclusion of plasmonic layer of Silver nanoparticles. Plasmonics. 9: 1271-1281.

[14]         Wallentin J., Anttu N., Asoli D., Huffman M., Åberg I., Magnusson M. H., Siefer G., Fuss-Kailuweit P., Dimroth F., Witzigmann B., (2013), InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science. 339: 1057-1060.

[15]         Pattnaik S., Chakravarty N., Biswas R., Dalal V., Slafer D., (2014), Nano-photonic and nano-plasmonic enhancements in thin film silicon solar cells. Solar Energy Mater. Solar Cells. 129: 115-123.

[16]         Chen X., Jia B., Saha J. K., Cai B., Stokes N., Qiao Q., Wang Y., Shi Z., Gu M., (2012), Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett. 12: 2187-2192.

[17]         Chou C.-H., Chen F.-C., (2014), Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale. 6: 8444-8458.

[18]         Song Y., Peng B. D., Xu Q., Cao N., Song G. Z., Yue Z. Q., Li B. K., Wang H. X., (2018), A method for demonstration of the feasibility of InP as an All-optical imaging sensor. Opt. Sens. ISBN: 978-1-943580-43-9.

[19]         Sumaryada T., Rohaeni S., Damayanti N. E., Syafutra H., Hardhienata H., (2019), Simulating the performance of Al0. 3Ga0. 7As/InP/Ge multijunction solar cells under variation of spectral Irradiance and temperature. Modell. Simul. Eng. 2019: Article ID 5090981.

[20]         Nematpour A., Nikoufard M., (2018), Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods. J. Adv. Res.10: 15-20.

[21]         Raj V., Dos Santos T. S., Rougieux F., Vora K., Lysevych M., Fu L., Mokkapati S., Tan H. H., Jagadish C., (2018), Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer. J. Phys. D: Appl. Phys.51: 395301-395306.

[22]         Yin X., Battaglia C., Lin Y., Chen K., Hettick M., Zheng M., Chen C.-Y., Kiriya D., Javey A., (2014), 19.2% efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photon. 1: 1245-1250.

[23]         Kotlyar K. P., Vershinin A. V., Reznik R. R., Pavlov S. I., Kudryashov D. A., Zelentsov K. S., Mozharov A. M., (2019), Photovoltaic properties of InP NWs/p-Si heterostructure. J. Phys.: Conf. Series. 1410: 012060-012067.

[24]         Wang Y., Zhang X., Guo M., Sun X., Yu Y., Xi J., (2015), Needle profile grating structure for absorption enhancement in GaAs thin film solar cells. Opt. Laser Technol. 74: 43-47.

[25]         Lagos N., Sigalas M., Niarchos D., (2011), The optical absorption of nanowire arrays. Photon. Nanostruc. Fundament. Applic. 9: 163-167.

[26]         Tabrizi A. A., Pahlavan A., (2020), Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective laye., Opt. Communic. 454: 124437-124443.

[27]         Choi M., Kang G., Shin D., Barange N., Lee C.-W., Ko D.-H., Kim K., (2016), Lithography-Free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics. ACS Appl. Mater. Interf. 8: 12997-13008.

[28]         Zhong Y.-K., Fu S.-M., Ju N. P., Lin A., (2015), Toward ultimate nanophotonic light trapping using pattern-designed quasi-guided mode excitations. JOSA B. 32: 1252-1258.

[29]         Wang Y., Zhang X., Sun X., Qi Y., Wang Z., Wang H., (2016), Enhanced optical properties in inclined GaAs nanowire arrays for high-efficiency solar cells. Opt. Laser Technol. 85: 85-90.

[30]         Yin Y., Yu Z., Liu Y., Ye H., Zhang W., Cui Q., Yu X., Wang P., Zhang Y., (2014), Design of plasmonic solar cells combining dual interface nanostructure for broadband absorption enhancement. Opt. Communic. 333: 213-218.

[31]         Biswas R., Xu C., (2011), Nano-crystalline silicon solar cell architecture with absorption at the classical 4n 2 limit. Opt. Express. 19: A664-A672.

[32]         Nematpour A., Nikoufard M., Mehragha R., (2018), Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure. Laser Phys. 28: 066202-066208.

[33]         Ferry V. E., Sweatlock L. A., Pacifici D., Atwater H. A., (2008), Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 8: 4391-4397.

[34]         Shi M., (2019), Effect of metallic grid on Solar cell reflectance spectrum simulation and optimization of antireflection film. Photon. Energy. ISBN: 978-1-943580-72-9.

[35]         Zerfaoui  H., Djalel D., Burak K., (2019), The simulated effects of different light intensities on the SiC-based solar cells. Silicon. 4: 1917-1923.