Facile synthesis of high magnetization long term stable bimetallic FeCo nanoparticles

Document Type : Short Communication


School of Nanotechnology, Rajiv Gandhi Technical University, Bhopal (MP), India.


In this study, we reported a facile synthesis of bimetallic FeCo nanoparticles (Fe-Co NPs) by FeSO4.7H2O and Co(Ac)2.4H2O in the presence of sodium borohydride and 2-thiotic acid. The structure and morphology of the nanoparticles were characterized by X-Ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and Transmission Electron Microscopy (TEM). These small, spherical shape and pure phase FeCo bimetallic nanoparticles have saturation magnetization up to 221 emu/g. The results suggest that the long term stable and high saturation magnetization (Ms) FeCo nanoparticles can be used for data storage, catalysis, environmental remediation, high-performance inductors, magnetic hyperthermia treatment and magnetic resonance imaging applications.


[1] Willard M. A., Kurihara L. K., Carpenter E. E., Calvin S., Harris V. G., (2004), Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49: 125–170.
[2] Hasegawa T., Niibori T., Takemasa Y., Oikawa M., (2019), Stabilisation of tetragonal FeCo structure with high magnetic anisotropy by the addition of V and N elements. Sci. Rep. 9: 1–9.
[3] Bai J., Wang J. P., (2005), High-magnetic-moment core-shell-type FeCo-Au/Ag nanoparticles. Appl. Phys. Lett. 87: 1–3.
[4] Moradiya M. A., Dangodara. A., Pala J., Savaliya C. R., Dhruv D., Rathod V. R., Joshi A. D., Shah N. A., Markna J. H., (2019), A natural tomato slurry as a photosensitizer for dye-sensitized solar cells with TiO2/CuO composite thin films. J. Sep. Sci. Technol. 54: 207-212.
[5] Doane T. L., Burda C., (2012), The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 41: 2885–2911.
[6] Wei X. W., Zhu G. X., Liu Y. J., Ni Y. H., Song Y., Xu Z., (2008), Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem. Mater. 20: 6248–6253.
[7] Watts P. C. P., Hsu W. K., Randall D. P., Kotzeva V., Chen G. Z., (2002), Fe-filled carbon nanotubes: Nano-electromagnetic inductors. Chem. Mater. 14: 4505–4508.
[8] Seo W. S., Lee J. H., Sun X., (2006), FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5: 971–976.
[9] Hisada D., Fujiwara Y., Sato H., Jimbo M., Kobayashi T., Koichi Hata K., (2011), Structure and magnetic properties of FeCo nanoparticles encapsulated in carbon nanotubes grown by microwave plasma enhanced chemical vapor deposition. J. Magn. Magn. Mater. 323: 3184–3188.
[10] Scott J. H. J., Majetich S. A., Turgut Z., Michael E., (2016), Carbon Coated Nanoparticle Composites. Mat. Res. Soc. Symp. Proc. 457: 219–224.
[11] Zubris M., King R. B., Garmestani H., Tannenbaum R., (2005), FeCo nanoalloy formation by decomposition of their carbonyl precursors. J. Mater. Chem. 15: 1277–1285.
[12] Tzitzios V., Basina G., Niarchos D., Li W., Hadjipanayis G., (2011), Synthesis of air stable FeCo nanoparticles. J. Appl. Phys. 109: 109–112.
[13] Chaubey G. S., Barcena C., Poudyal N., Rong N., Gao J., Sun S., Liu J. P., (2007), Synthesis and stabilization of FeCo nanoparticles. J. Am. Chem. Soc. 129: 7214–7215.
[14] Zamanpour M., Chen Y., Hu B., Carroll K., Huba J. Z., Carpenter E. E., Lewis L. H., Harris V. G., (2012), Large-scale synthesis of high moment FeCo nanoparticles using modified polyol synthesis. J. Appl. Phys. 111: 07B528.
[15] Yang F. J., Yao J., Min J. J., Li  J. H., Chen X. Q., (2016), Synthesis of high saturation magnetization FeCo nanoparticles by polyol reduction method. 648: 143–146.
[16] Kim C. W., Kim Y. H., Cha H. G., Lee D. K., Kang Y. S., (2006), Synthesis and characterization of crystalline FeCo nanoparticles. J. Nanosci. Nanotechnol. 6: 3417–3421.
[17] Desvaux C., Amiens C., Fejes P., Renaud P., Respaud M., Lecante P., Snoeck E., Chaudret B., (2005), Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles. Nat. Mater. 4: 750–753.