Ultrasonic-assisted solvothermal synthesis of self-assembled Copper Ferrite nanoparticles

Document Type : Reasearch Paper


1 Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.

2 Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.

3 Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.


The aim of this work was to characterize copper ferrite nanoparticles synthesized via solvothermal method and to investigate the effects of ultrasonic waves on the synthesis efficiency. Crystal structure, functional groups, microstructure, particle size, magnetic properties, specific surface area, porosity distribution and photocatalytic activity of the synthesized nanoparticles were also investigated. Structural analyses revealed that nanostructured copper ferrites with spinel crystal structure have been successfully synthesized via both solvothermal and ultrasonic-assisted solvothermal methods. The powders contained submicron spheres which were consisted of nanoparticles with regular arrangement. The applied ultrasonic wave had significant effect on the shape and size of the spheres, particularly on their specific surface area, but it had no considerable effect on the magnetic properties. All the synthesized powders were superparamagnetic and their band gap energy was about 1.5 eV. High absorption rate is another unique characteristic of the powders so that it can complete the photocatalytic process in less than 10 min. The saturation magnetization of about 47 emu/g, together with negligible coercivity, make the synthesized nanostructured absorbent ideal for magnetic separation processes.


[1] Holkar C. R., Jadhav A. J., Pinjari D. V., Mahamuni N. M., Pandit A. B., (2016), A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage. 182: 351-366.
[2] Raval N. P., Shah P. U., Shah N. K., (2016), Adsorptive amputation of hazardous azo dye Congo red from wastewater: A critical review. Environ. Sci. Pollut. Res. 23: 14810-14853.
[3] Tadjarodi A., Imani M., (2016), Synthesis of porous CdO sheet-like nanostructure based on soft template model and its application in dye pollutants adsorption. Int. J. Nano Dimens. 7: 150-159.
[4] Hosseini S. A., Davodian0 M., Abbasian A. R., (2017), Remediation of phenol and phenolic derivatives by catalytic wet peroxide oxidation over Co-Ni layered double nano hydroxides. J. Taiwan. Inst. Chem. E, 75: 97-104.
[5] Chekir N., Benhabiles O., Tassalit D., Laoufi N. A., Bentahar F., (2016), Photocatalytic degradation of methylene blue in aqueous suspensions using TiO2 and ZnO. Desalin. Water Treat. 57: 6141-6147.
[6] Li S., Chen J., Liu Y., Xu K., Liu J., (2019), In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH p-n heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation. J. Alloys Compd. 781: 582-588.
[7] Li S., Chen J., Jiang W., Liu Y., Ge Y., Liu J., (2019), Facile construction of flower-like bismuth oxybromide/bismuth oxide formate p-n heterojunctions with significantly enhanced photocatalytic performance under visible light. J. Colloid Interface Sci. 548: 12-19.
[8] Bhatkhande D. S., Pangarkar V. G., Beenackers A. A. C. M., (2002), Photocatalytic degradation for environmental applications – A review. J. Chem. Technol. Biotechnol. 77: 102-116.
[9] Zakeri S. M. E., Asghari M., Feilizadeh M., Vosoughi M., (2014), A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.
[10] Nagalakshmi M., Karthikeyan C., Anusuya N., Brundha C., Basu M. J., Karuppuchamy S., (2017), Synthesis of TiO2 nanofiber for photocatalytic and antibacterial applications. J. Mater. Sci.: Mate. Elect. 28: 15915-15920.
[11] Abbasian A. R., Omidvar-Askary N., (2019), Microstructural and mechanical investigation of high alumina refractory castables containing nano-titania. Ceram. Int. 45: 287-298.
[12] Karthikeyan C., Thamima M., Karuppuchamy S., (2019), Dye removal efficiency of perovskite structured CaTiO3 nanospheres prepared by microwave assisted method. Mater. Today: Proceedings. In Press.
[13] Tong H., Ouyang S., Bi Y., Umezawa N., Oshikiri M., Ye J., (2012), Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 24: 229-251.
[14] Khaksar E., Shafiee Afarani M., Samimi A., (2014), In situ solvothermal crystallization of TiO2 nanostructure on Alumina Granules for photocatalytic wastewater treatment. J. Mater. Eng. Perform. 23: 92-100.
[15] Gómez-Pastora J., Dominguez S., Bringas E., Rivero M. J., Ortiz I., Dionysiou D. D., (2017), Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310: 407-427.
[16] Kefeni K. K., Mamba B. B., Msagati T. A. M., (2017), Application of spinel ferrite nanoparticles in water and wastewater treatment: A review. Sep. Purif. Technol. 188: 399-422.
[17] Zamani A., Seyed Sadjadi M., Mahjoub A. R., Yousefi M., Farhadyar N., (2020), Synthesis and characterization ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites: Investigation of photocatalytic activity for the degradation of Congo Red under visible light irradiation. Int. J. Nano Dimens. 11: 58-73.
[18] Mohamed R. M., McKinney D. L., Sigmund W. M., (2012), Enhanced nanocatalysts. Mater. Sci. Eng. R. 73: 1-13.
[19] Wang T., Zhang L., Wang H., Yang W., Fu Y., Zhou W., Yu W., Xiang K., Su Z., Dai  S., Chai L., (2013), Controllable synthesis of hierarchical porous Fe3O4 particles mediated by Poly(diallyldimethylammonium chloride) and their application in arsenic removal. ACS Appl. Mater. Interfaces. 5: 12449-12459.
[20] Sapna Budhiraja N., Kumar V., Singh S. K., (2019), Shape-controlled synthesis of superparamagnetic ZnFe2O4 hierarchical structures and their comparative structural, optical and magnetic properties. Ceram. Int. 45: 1067-1076.
[21] Guo P., Lv M., Han G., Wen C., Wang Q., Li H., Zhao X., (2016), Solvothermal synthesis of hierarchical colloidal nanocrystal assemblies of ZnFe2O4 and their application in water treatment. Materials (Basel). 9: 806.
[22] Jing P., Du J., Wang J., Lan W., Pan L., Li J., Wei J., Cao D., Zhang X., Zhao C., (2015), Hierarchical SrTiO3/NiFe2O4 composite nanostructures with excellent light response and magnetic performance synthesized toward enhanced photocatalytic activity. Nanoscale. 7: 14738-14746.
[23] Zhu M., Meng D., Wang C., Diao G., (2013), Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl. Mater. Interfaces. 5: 6030-6037.
[24] Guo X., Wang K., Li D., Qin J., (2017), Heterogeneous photo-fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue. Appl. Surf. Sci. 420: 792-801.
[25] Sun Z., Liu L., Zeng Jia D., Pan W., (2007), Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens. Actuators B. 125: 144-148.
[26] Kombaiah K., Vijaya J. J., Kennedy L. J., Bououdina M., Al-Najar B., (2018), Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. J. Phys. Chem. Solids. 115: 162-171.
[27] Hou H., Xu G., Tan S., Zhu Y., (2017), A facile sol-gel strategy for the scalable synthesis of CuFe2O4 nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions. Infrared Phys. Technol. 85: 261-265.
[28] Agouriane E., Rabi B., Essoumhi A., Razouk A., Sahlaoui M., Costa B., Sajieddine M., (2016), Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by co-precipitation. J. Mater. Environ. Sci. 7: 4116-4120.
[29] Zhang E., Wang L., Zhang B., Xie Y., Wang G., (2019), Shape-controlled hydrothermal synthesis of CuFe2O4 nanocrystals for enhancing photocatalytic and photoelectrochemical performance. Mater. Chem. Phys. 235: 121633-121638.
[30] Yang X., Zhang S., Yu Q., Sun P., Liu F., Lu H., Yan X., Zhou X., Liang X., Gao Y., (2018), Solvothermal synthesis of porous CuFe2O4 nanospheres for high performance acetone sensor. Sens. Actuators. B. 270: 538-544.
[31] Shaterian M., Rezvani A., Abbasian A. R., (2020), Controlled synthesis and self-assembly of ZnFe2O4 nanoparticles into microspheres by solvothermal method. Mater. Res. Express. 6: 1250-1255.
[32] Atacan K., Topaloğlu B., Özacar M., (2018), New CuFe2O4/amorphous manganese oxide nanocomposites used as photocatalysts in photoelectrochemical water splitting. Appl. Catal. A. 564: 33-42.
[33] Hou H., Xu G., Tan S., Xiang S., (2018), Effects of solvents on the synthesis and infrared radiation emissivity of CuFe2O4 spinels. J. Alloys Compd. 763: 736-741.
[34] Kurian J., Mathew M. J., (2018), Structural, optical and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method. J. Magn. Magn. Mater. 451: 121-130.
[35] Liu X., Qi X., Zhang L., (2018), 3D hierarchical magnetic hollow sphere-like CuFe2O4 combined with HPLC for the simultaneous determination of Sudan I–IV dyes in preserved bean curd. Food Chem. 241: 268-274.
[36] Muthukumar K., Lakshmi D. S., Acharya S. D., Natarajan S., Mukherjee A., Bajaj H., (2018), Solvothermal synthesis of magnetic copper ferrite nano sheet and its antimicrobial studies. Mater. Chem. Phys. 209: 172-179.
[37] Phuruangrat A., Kuntalue B., Dumrongrojthanath P., Thongtem T., Thongtem S., (2018), Microwave-assisted solvothermal synthesis of cubic ferrite (MFe2O4, M= Mn, Zn, Cu and Ni) nanocrystals and their magnetic properties. Dig. J. Nanomater. Biostruct. 13: 563-568.
[38] Zheng J., Lin Z., Liu W., Wang L., Zhao S., Yang H., Zhang L., (2014), One-pot synthesis of CuFe2O4 magnetic nanocrystal clusters for highly specific separation of histidine-rich proteins. J. Mater. Chem. B. 2: 6207-6214.
[39] Chatterjee B. K., Bhattacharjee K., Dey A., Ghosh C. K., Chattopadhyay K. K., (2014), Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: Orientation of magnetic easy axis. Dalton Trans. 43: 7930-7944.
[40] Shen Y., Wu Y., Xu H., Fu J., Li X., Zhao Q., Hou Y., (2013), Facile preparation of sphere-like copper ferrite nanostructures and their enhanced visible-light-induced photocatalytic conversion of benzene. Mater. Res. Bull. 48: 4216-4222.
[41] Kafi-Ahmadi L., Mohammadzadeh-Hesar R., Khademinia S., (2018), Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres. Int. J. Nano Dimens. 9: 346-356.
[42] Hosseini S. A., Majidi V., Abbasian A. R., (2018), Photocatalytic desulfurization of dibenzothiophene by NiCo2O4 nanospinel obtained by an oxidative precipitation process modeling and optimization. J. Sulfur Chem. 39: 119-129.
[43] Mills G., Li Z., Meisel D., (1988), Zero-dimensional excitons in semiconductor clusters. J. Phys. Chem. 92: 822-830.
[44] Tauc J., Menth A., (1972), States in the gap. J. Non· Cryst. Solids. 8: 569-585.
[45] Tran P. H., Thi Hang A.-H., (2018), Deep eutectic solvent-catalyzed arylation of benzoxazoles with aromatic aldehydes. RSC Adv. 8: 11127-11133.
[46] Zaharescu M., Mocioiu O. C., (2013), Infrared Spectroscopy, in: T. Schneller, R. Waser, M. Kosec, D. Payne (Eds.) Chem. Solut. Depos.Func. Oxide Thin Films, Springer Vienna, Vienna, 213-230.
[47] Nakamoto K. (2009). Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Sixth Edition ed., John Wiley & Sons, Hoboken, New Jersey.
[48] Guo P., Zhang G., Yu J., Li H., Zhao X. S., (2012), Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids Surf. A. 395: 168-174.
[49] Hosseini S. A., Abbasian A. R., Gholipoor O., Ranjan S., Dasgupta N., (2019), Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe2O4 nanocomposite and ZnFe2O4 nanospinel. Int. J. Environ. Sci. Technol. 16: 7455-7466.
[50] Abbasian A. R., Shafiee Afarani M., (2019), One-step solution combustion synthesis and characterization of ZnFe2O4 and ZnFe1.6O4 nanoparticles. Appl. Phys. A. 125: 721-726.
[51] Guo P., Wang R., Xue J., Xu B., Sang Y., Li H., Zhao X. S., (2017), Assembly of colloidal cuprous oxide nanocrystals and study of its magnetic and electrocatalytic properties. Colloids Surf. A. 522: 295-303.