Structural, morphological and optical characterization of green synthesized ZnS nanoparticles using Azadirachta Indica (Neem) leaf extract

Document Type : Reasearch Paper


1 Department of Physics, Visva-Bharati University, Santiniketan –731235, India.

2 Institute of Materials Science, University of Silesia, Chorzów, Poland.

3 Department of Physics, University of Hradec Králové, Hradec Králové, Czech Republic.

4 Institute of Physics, University of Silesia, Katowice, Poland.


ZnS nanoparticles have been synthesized using various amounts of aqueous Azadirachta Indica (Neem) leaf extract as capping agent and stabilizer. The synthesized nanoparticles were studied by FTIR, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX) and UV-Visible spectroscopy. FTIR spectra shows that the biomolecules such as polyphenols, carboxylic acids, polysaccharide, amino acids and proteins present in the extract are responsible for the binding and stabilizing the synthesized ZnS nanoparticles. Analysis of the XRD data confirms the cubic structure of the synthesized materials with an average particle size of ~2 nm. Using XRD data the microstrain and dislocation density in ZnS crystals have been estimated. The particle size, strain and dislocation density are found to be affected by the amount of the extract used for synthesis. SEM and TEM studies were made to study the morphology and size of the particles. The EDAX spectra confirmed the presence of zinc and sulfur in single nanoparticle. UV-Visible spectra indicated a blue shift in the absorption peak for the extract-capped ZnS materials in comparison to the pure ZnS. The particle size of the ZnS nanoparticles estimated using UV-Visible spectral data along with those obtained from XRD analysis confirms that the green-synthesized ZnS nanoparticles lie in the range of quantum dots. The present study describes a simple, cost effective way of nanoparticle synthesis suitable for large scale production.


[1]          Fang X., Zhai T., Gautam U. K., Li L.,  Wu L.,  Bando Y., Golberg D., (2011), ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 56: 175–287.
[2]          Pourahmad A., (2015), Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution. Int. J.Nano Dimens. 6: 83-88.
[3]          Kumar N., Purohit L. P., Goswami Y. C., (2016), Spin coating of ZnS nanostructures on filter paper andtheir characterization. Phys. E. 83: 333–338.
[4]          Sreekala G. N., Abdullakutty F., Beena B., (2019), Green synthesis, characterization and photo catalytic degradation efficiency of trimanganese tetroxide nanoparticle. Int. J. Nano Dimens. 10: 400-409.
[5]          Zhou J., Sheng Z., Han H., Zou M., Li C., (2012), Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source.  Mater. Lett. 66: 222–224.
[6]          Bankar A., Joshi B., Ravi Kumar A., Zinjarde S., (2010), Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. 368: 58–63.
[7]          Bankar A., Joshi B., Ravi Kumar A., Zinjarde S., (2010), Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B. 80: 45–50.
[8]          Zhou G. J., Li S. H., Zhang Y. C., Fu Y. Z., (2014), Biosynthesis of CdS nanoparticles in Banana peel extract. J. Nanosci. Nanotechnol.14: 4437–4442.
[9]          Sathishkumar M., Saroja M., Venkatachalam M., (2017), Characterization and antimicrobial activity of green synthesized zinc sulphide nanoparticles using plant extracts of phyllanthus niruri. Int. J. Chem. Sci. 15: 123-130.
[10]      Satishkumar M., Saroja M., Venkatachalam M., Parthasarathi G., Rajamanickam A. T., (2017), Biosynthesis and characterization of zinc sulphide nanoparticles using leaf extract of tridaxprocumbens. Orient. J. Chem. 33: 903-909.
[11]      Sur U. K., Ankamwar B., (2016), Optical, dielectric, electronic and morphological study of biologically synthesized zinc sulphide nanoparticles using moringa oleifera leaf extract and quantitative analysis of chemical components present in the leaf extract. RSC Adv. 6: 95611-95619.
[12]      Satishkumar M., Saroja M., Venkatachalm M., (2019), Acalypha and curcuma longa plant extracts mediated  ZnS nanoparticles. Mat. Sci. Res. Ind. 16: 174-182.
[13]      Senapati U. S., Sarkar D., (2015), Structural, spectral and electrical properties of green synthesized ZnS nanoparticles using elaeocarpus floribundus leaf extract. J. Mater. Sci: Mater. Electron. 26: 5783–5791.
[14]      Bisauriya R., Verma D., Goswami Y., (2018), Optically important ZnS semiconductor nanoparticles synthesized using organic waste banana peel extract and their characterization. J. Mater. Sci: Mater. Electron. 29: 1868–1876.
[15]           Esakkiammal A., Malathi A., Ujjal K. S., Balaprasad A., (2018), Honey mediated green synthesis of photoluminiscent ZnS nano/micro particles. Res. Med. Eng. Sci. 3: 214-219.
[16]      Satishkumar M., Saroja M., Venkatachalam M., (2017), Green synthesis, characterization and antimicrobial activity of ZnS using syzygium aromaticum extracts. Int. J. Chem. Tech. Res.10: 443-449.
[17]      Senapati U. S., Sarkar D., (2014), Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Ind. J. Phys. 88: 557–562.
[18]      Senapati U. S., Jha D. K., Sarkar D., (2015), Structural, optical, thermal and electrical properties of fungus guided biosynthesized  zinc sulphide nanoparticles. Res. J. Chem. Sci. 5: 33-40.
[19]      Bai H. J., Zhang Z. M., Gong J., (2006), Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized rhodobacter sphaeroides. Biotech. Letts. 28: 1135–1139.
[20]      Malarkodi C., Rajeshkumar S., Paulkumar C., Vanaja M., Gnanajobitha G., Annadurai G., (2014), Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogen. Bioinorg. Chem. Appl. Article ID 347167, 10 pages.
[21]      Chopra R. N., Nayer S. L. and Chopra I. C., (1956), Glossary of indian medicinal plants, CSIR, New Delhi.
[22]      Biswas K., Chattopadhyay I., Banerjee R. K., Bandyopadhyay U., (2002), Biological activities and medicinal properties of neem (Azadirachtaindica). Curr. Sci. 82: 1336–1345.
[23]      Tiwari V., Darmani N. A., Yue B. Y., Shukla D., (2010), In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother. Res. 24: 1132–1140.
[24]      Mahapatra S., Jeffrey Karnes R., Holmes M. W., Young C. Y. F., Cheville J. C., Kohli M., Klee E. W., Tindall D. J., K. V., (2011), Novel molecular targets of Azadirachta indica associated with inhibition of tumor growth in prostate cancer. AAPS J. 13: 365–377.
[25]      Gupta S., Kataria M., Gupta P. K., Murganandan S., Yashroy R. C., (2004), Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J. Ethnopharmacol. 90: 185–189.
[26]      Banerjee P., Satapathy M., Mukhopahayay A., Das P., (2014), Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing. 1: 1-10.
[27]      Santoshkumar J., Rajeshkumar S., Venkatkumar S., (2017), Phyto-assisted synthesis, characterization and application of gold nanoparticles–A review. Biochem. Biophys. Rep. 11: 46–57.
[28]      Verma A., Mehata M. S., (2016), Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Rad. Res. Appl. Sci. 9: 109-115.
[29]      Singh A., Neelam Kaushik M., (2019), Physicochemical investigations of zinc oxide nanoparticles synthesized from azadirachta indica (neem) leaf extract and their interaction with calf-thymus DNA. Result in Phys. 13: 102168-102177.
[30]      Sobia D., Mohammad S., Azhar I., (2015), Synthesis of zinc sulphide nanostructures by co- precipitation: Effect of doping on electro-optical properties. Kenkyu J. Nanotech. Nanosci.1: 34-39.
[31]      Ramteke G. G., Lanje A. S., Pimpalshende D. M., (2018), Structural and optical performance of ZnS nanoparticles synthesized via chemical route. Int. J. Sci. Res. Phys. Appl. Sci. 6: 69-74.
[32]      Cullty B. D., (1956), Elements of x-ray diffraction, Addison-Wesley, Reading, MA, p.99.
[33]      Dhanam M., Kavitha B., Velumani S., (2010), An investigation on silar Cu(In1− xAlx)Se2 thin films. Mater. Sci. Eng. B. 174: 209-215.
[34]      Pawar R. R., Bhavsar R. A., Sonawane S. G., (2012), Structural and optical properties of chemical bath deposited Ni  doped Cd-Se thin films. Ind. J. Phys. 86: 871-876.
[35]      Singh M., Goyal M., Devlal K., (2018), Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12: 470-475.
[36]       He R., Qian  X., Yin J., Xi H., Bian L., Zhu Z., (2003), Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation. Colloid. Surf. A. 220: 151- 157.
[37]      Borovaya M., Pirko Y., Krupodorova T., Naumenko A., Blume Y., Yemets A., (2015), Biosynthesis of cadmium  sulphide quantum dots by using pleurotus ostreatus (Jacq.) P. Kumm. Biotech. Biotech. Equip. 29: 1156-1163.
[38]      Ashcroft N. W., Mermin N. D., (1976), Solid state physics, Sanders College Publishing, Forth Worth, 320-340.
[39]      Huang L., Weng X., Chen Z., Megharaj M., Naidu R., (2014), Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 130: 295–301.
[40]      Choi Y., Choi M. J., Cha S. H., Kim Y. S., Cho S., Park Y., (2014), Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction. Nanoscale Res. Lett. 9: 1–8.