Adsorption and photodegrading of Methylene Blue by using of BaLa‌xGdxFe12-2xO19 (x=0.2, 0.4, 0.6 and 0.8)/PANI nanocomposites

Document Type : Reasearch Paper


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Chemistry, Yadegar-e Imam Khomeini (RAH) Shahr-e Rey Branch, Islamic Azad University, Tehran, Iran.

3 Department of Organic Chemistry, Faculty of Pharmaceutical chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

4 Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

5 Department of Engineering, Imam Hossein University, Tehran, Iran.


In this paper, a series of BaLa­xGdxFe12-2xO19 (x=0.2, 0.4, 0.6 and 0.8)/PANI (polyaniline) nanocomposites synthesized for investigating the photocatalytic properties. Barium hexaferrite doped with La3+ and Gd3+ prepared via a sol-gel auto-combustion method and then the binary nanocomposites fabricated by the in situ polymerization method. (Fourier transform infrared) FTIR, (x-ray diffraction) XRD, (field emission electron microscopy) FESEM and (vibrating sample magnetometer) VSM confirmed the formation of binary nanocomposites. In FTIR analysis, the peaks at 431 and 580 cm-1 wavenumbers supported the formation of barium doped hexaferrite. At 1463 and 1554cm-1 wavenumbers, the formations of quinoid and benzenoid rings were observable. The XRD patterns of nanocomposites proved the formation of PANI by appearing the amorphous peak at 2θ=23.05 and 26.05 degrees beside the hexaferrite phase. In FESEM pictures, the sphere shape of PANI masked the whole nanoparticles of hexaferrite. In VSM hysteresis loops, by doping La3+, the saturation magnetization increased to 74 emu. Then, by adding non-magnetic part (PANI) to the magnetic hexaferrite, the saturation magnetization decreased to 11 emu. The photocatalytic properties of samples performed under the irradiation of UV-Vis light. All samples presented the photocatalytic properties. Hexaferrites as a semiconductor generated the electron-hole pairs under irradiation. PANI prevented the accumulation of electron-hole pairs on the valance band and consequently accelerated the photo-degradation of methylene blue. Kinetic studies and calculation of the correlation coefficient (R2) value which was about 0.98, proved that the photocatalytic reactions followed the Pseudo-first order kinetic.


Main Subjects

[1]             Kang  Y.-M., (2015), High saturation magnetization in La–Ce–Zn–doped M-type Sr-hexaferrites.  Ceram. Int. 41: 4354-4359.
[2]          Meng P., Xiong K., Wang L., Li S., Cheng Y., Xu G., (2015), Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1−xTiFe10O19.  J. Alloys Comp. 628: 75-80.
[3]          Roshanaei K., (2016), Controlled synthesis and photocatalytic activities of barium hexaferrite nanoparticles and examine decolorization methyl orange on liver of rats.  J. Mater. Sci: Mater. Electron. 28: 4537-4544.
[4]          Velhal N., Kulkarni G., Mahadik D., Chowdhury P., Barshilia H., Puri V.,  (2016), Effect of Ba+2 ion on structural, magnetic and microwave properties of screen print ed BaxSr1-XFe12O19 thick films.  J. Alloys Comp.  682: 730-737.
[5]          Pullar R. C.,  (2012), Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57: 1191-1334.
[6]          Davoodi A., Hashemi B., (2011), Magnetic properties of Sn–Mg substituted strontium hexaferrite nanoparticles synthesized via coprecipitation method. J. Alloys Comp. 509: 5893-5896.
[7]          Afghahi S. S. S., Jafarian M., Atassi Y., (2016), Microstructural and magnetic studies on BaMgxZnxX2xFe12−4xO19 (X=Zr, Ce, Sn) prepared via mechanical activation method to act as a microwave absorber in X-band. J. Magnet. Magnetic Mater. 406: 184-191.
[8]          Durmus Z., Kavas H., Durmus A., Aktaş B.,(2015), Synthesis and micro-structural characterization of graphene/strontium hexaferrite (SrFe 12 O 19 ) nanocomposites. Mater. Chem. Phys. 163: 439-445.
[9]          Hongfei L., Jian jiang W., Baocai X., Guoshun W., Yongshen H., Haitao G., Weimin Y., (2015), Effects of Mg or Sr doping on the intrinsic characteristics and absorption properties of micro-nano BaFe12O19 hollow multiphase ceramic microspheres. J.Mag. Magnet. Mater. 374: 530-538.
[10]        Sözeri H., Mehmedi Z., Kavas H., Baykal A., (2015), Magnetic and microwave properties of BaFe 12 O 19 substituted with magnetic, non-magnetic and dielectric ions. Ceram. Int. 41: 9602-9609.
[11]        Ghezelbash S., Yousefi M., Hossainisadr M., Baghshahi S., (2018), Structural and magnetic properties of Sn4+ doped strontium hexaferrites prepared via sol–gel auto-combustion method. IEEE Transact. Magnet. 54: 1-6.
[12]        Ammar Houasa H. L., Ksibia M., Elaloui E., Chantal Guillard J.-M. H., (2001), Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B: Env. 31: 145–157.
[13]        Mikhaylov S., Pud A., Wojkiewicz J.-L., Coddeville P., (2017), UV-light induced solid-phase photodegradation in PANI nanocomposites. Nanomaterials: Application & Properties (NAP), 2017 IEEE 7th International Conf. 2017: IEEE, pp. 03NNSA09-1-03NNSA09-4.
[14]        Ebrahimi Z., Hedayati K., Ghanbari D., (2017), Preparation of hard magnetic BaFe12O19–TiO2 nanocomposites: applicable for photo-degradation of toxic pollutants. J. Mater. Sci: Mater. Electronic. 28: 13956-13969.
[15]        Hong X., Xie Y., Wang X., Li M., Le Z., (2015), A novel ternary hybrid electromagnetic wave-absorbing composite based on BaFe 11.92 (LaNd)0.04O19-titanium dioxide/multiwalled carbon nanotubes/polythiophene. Compos. Sci. Technol. 117: 215-224.
[16]        Mishra D. D., Huang Y., Duan N., Tan G., (2018), Visible photocatalytic degradation of methylene blue on magnetic semiconducting La0.2Sr0.7Fe12O19. J. Mater. Sci: Mater. Electron. 29: 9854-9860.
[17]        Xiong P., Chen Q., He M., Sun X., Wang X., (2012), Cobalt ferrite–polyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. J. Mater. Chem. 22: 17485-17489.
[18]        Mousavinia M., (2014), Structural, magnetic, and reflection loss characteristics of Ni/Co/Sn-substituted strontium ferrite/functionalized MWCNT nanocomposites. J. Electron. Mater.43: 2573-2583.
[19]        Afghahi S. S. S., Peymanfar R., Javanshir Sh., Atassi Yomen., Jafarian M., (2016), Synthesis,  characterization  and  microwave characteristics  of  ternary  nanocomposite  of MWCNTs/doped Sr-hexaferrite/PANI. J. Magnet. Mag. Mater.423: 152-157.
[20]        Li Y., (2012), Preparation, magnetic and electromagnetic properties of polyaniline/strontium ferrite/multiwalled carbon nanotubes composite. Appl. Surf. Sci.258: 3659-3666.
[21]        Gairola S. P., Verma V., Kumar L., Abdullah Dar M., Annapoorni S., Kotnala R. K., (2010), Enhanced microwave absorption properties in polyaniline and nano-ferrite composite in X-band. Synth. Metals. 160: 2315-2318.
[22]        Rostami M., (2016), Characterization of magnetic and microwave absorption properties of multi-walled carbon nanotubes/Mn-Cu-Zr substituted strontium hexaferrite nanocomposites. Mater. Res. Bullet. 83: 379-386.
[23]        Yang C. C., (2011), Synthesis, infrared and microwave absorbing properties of       (BaFe12O19+BaTiO3)/polyaniline composite. J. Magnet. Mag. Mater.323: 933-938.
[24]        Hou J., Cao R., Jiao S., Zhu H., Kumar R. V., (2011), PANI/Bi12TiO20 complex architectures: Controllable synthesis and enhanced visible-light photocatalytic activities. Appl. Catal. B: Env. 104: 399-406.
[25]        Rai B. K., Mishra S. R., Nguyen N. N., Liu J. P.,  (2013), Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J.  Alloys Comp. 550: 198-203.
[26]        Mahdiani M., Sobhani A., Salavati-Niasari M., (2017), Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: Sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185: 140-148.
[27]        Fu W., (2006), Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles. Mater. Lett. 60: 2723-2727.
[28]        Valero-Luna C., Palomares-Sanchéz S., Ruiz F., (2016), Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today. 266: 110-119.
[29]     Mittal A., (2010), Removal and recovery of chrysoidine Y from aqueous solutions by waste materials. J. Coll. Interf. Sci. 344: 497–507.
[30]   Gupta V., Jian R., Shirivasta M., (2011), Removal of the hazardous dye—Tartrazine by         photodegradation on titanium dioxide surface.  Mater. Sci. Eng. C. 31: 1062–1067.
[31]     Saleh T., Gupta V., (2012), Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. Coll. Interf. Sci. 371: 101–106.
[32]      Khani H., Rofoui M., Arab P., Gupta V., Vafaei Z., (2010), Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion (II). Hazard. Mater. 183: 402–409.
[33]      Sarvanan R., (2016), Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of colored dyes. Molec. Liq. 221: 1029-1033.
[34]    Divaraj M., (2016), Preparation of novel shape Cu and Cu/Cu2O nanoparticles for the determination of dopamine and paracetamol. Molec. Liq. 221: 930-941.