Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics

Document Type : Reasearch Paper


Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.


In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-n structure which is caused by workfunction difference between electrodes and silicon. In JL-FETs as gate voltage increases, the electric-field intensifies and the band diagram profile starts to change. It is illustrated that, by increasing the gate voltage, the potential barrier decrease and the drain current increase. In the gate voltage of 0.64 V, due to appearance of a negative peak of electric-field and carriers transport within the field, the drain current decrease. Consequently, the NDR characteristic is achieved. With increase of the gate voltage the negative peak of electric-field is intensified and the drain current is decreased.


Main Subjects

[1] Colinge J. P., Lee C. W., Afzalian A., Dehdashti Akhavan N., Yan R., Ferain I., Razavi I., O’Neill B., Blake A., White M., Kelleher A-K., McCarthy B., Murphy R., (2010), Nanowire transistors without junctions. Nat. Nano Technol. 5:  225–229.
[2] Lee C. W., Ferain I., Afzalian A., Yan A., Dehdashti Akhavan N., Razavi P, Colinge J. P., (2010), Performance estimation of junctionless multigate transistors. IEEE Transact. Elect. Dev. 57: 620-625.
[3] Yan R., Kranti A, Ferain I, Lee C. W, Yu R., Dehdashti Akhavan N., Razavi P., Colinge J-P, (2011), Investigation of high-performance sub-50 nm junctionless nanowire transistors. Microelectron. Reliabil. 51: 1166-1171.
[4] Colinge J. P., Kranti A.,Yan R., Lee C. W, Ferain I., Yu R., Dehdashti Akhavan N., Razavi P., (2011), Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid. State. Electron. 65–66: 33-37.
[5] Colinge J. P., Bale X., Bayot V., Grivei E., (1996), A silicon-on-insulator quantum wire. Solid-State Elect.  39: 49-51.
[6] Lee C. W., Yun S. R. N., Yu C. G, Park J-T., Colinge J. P., (2007), Device design guidelines for nano-scale MuGFETs. Solid-State Elect. 51: 505–510.
[7]  Qian X.,Yang Y., Zhu Z., Zhang S. L., Wu D., (2011), Evaluation of DC and AC performance of junctionless MOSFETs in the presence of variability. IEEEInternational Conference on IC Design & Technology.
[8] Akarvardar K., Mercha K., Simoen E., Subramanian V., Claeys C., Gentil P., Cristoloveanu S., (2007), High-temperature performance of state-of-the-art triple-gate transistors. Microelectron. Reliabi. 47: 2065-2069.
[9] Lee K., Lee J., Park J., Yang K., (2015), A novel Ku-band RTD-based quadrature VCO for low power applications. IEEE. Microwave. Wireless. Co. 25: 328-330.
[10] Sedigh Ziabari S. A., Tavakoli Saravani M. J., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.
[11] Okada K., Kasagi K., Oshima N., Suzuki S., Asada M., (2015), Resonant-tunneling-diode terahertz oscillator using patch antenna integrated on slot resonator for power radiation. IEEE Trans. THz Sci. Technol. 5: 613-618.
[12] Kumar A., Kumar V., Agarwal S., Basak A., Jain N., Bulusu A., Manhas S. K., (2014), Nitrogen-terminated semiconducting zigzag GNR FET with negative differential resistance. IEEE Trans. Nanotechnol. 13: 16-22.
[13] Kang S., Fallahazad B., Kayoung L., Movva H., (2015), Bilayer graphene-hexagonal boron nitride heterostructure negative differential resistance interlayer tunnel FETs. IEEE Elect. Device Let. 36: 405-407.
[14] Yu X., Mao L. H., Guo W. L., Zhang S. L., Xie S., Chen Y., (2010), Monostable–bistable transition logic element formed by tunneling real-space transfer transistors with negative differential resistance. IEEE Elect. Dev. Let. 31: 1224-1226.
[15] Laskar J., Bigelow J. M., Leburton J., Kolodzey J., (1992), Experimental and theoretical investigation of the DC and high-frequency characteristics of the negative differential resistance in pseudomorphic AlGaAs/InGaAs/GaAs MODFET’s. IEEE Trans. Elect. Devices. 39: 257-263.
[16] Wu C. L., Hsu W. C., (1996), Enhanced resonant tunneling real-space transfer in δ-doped GaAshGaAs gated dualchannel transistors grown by MOCVD. IEEE Trans. Elect. Dev. 43: 207-212.
[17] Chen Y. W., Hsu W. C., Shieh H. M., Lin Y. S., Li Y. J., Wang T. B., (2002), High breakdown characteristic δ-doped InGaP/InGaAs/AlGaAs tunneling real-space transfer HEMT. IEEE Trans. Elect. Dev. 49: 221-225.
[18] Chang S., Zhao L., Lv Y., Wang H., Huang Q., He J., (2015), Negative differential resistance in graphene nanoribbon superlattice field-effect transistors. Micro & Nano Lett. 10: 400-403.
[19] Molaei Imenabadi R., Saremi M., (2017), A Resonant tunneling nanowire field effect transistor with physical contractions: A negative differential resistance device for low power very large scale integeration application. J. Elect. Mater. 47: 1091-1098.
[20]  Zhang Q., Chen S., Zhang S, Shang W, Liu L, Wang M, Yu H., Deng L., Qi G, Wang L., Han S., Hu B., Kang Q., Liu Y., Yi M., Ma Y., Yang W., Feng J., Liu X., Sunc  H., Huang W., (2017), Negative differential resistance and hysteresis in graphene-based organic light-emitting devices. J. Mater. Chem. 8: 1-8.
[21] Balkan N., Ridley B. K., Vickers A. J., Division N. A. T. O. S. A., (1993), Negative differential resistance and instabilities in 2-D semiconductors. (Springer Science, Business Media, LLC, 1993).
[22] Dorf R. C., (2006), The electrical engineering handbook: Sensors, nanoscience, biomedical engineering, and instruments. (CRC. Press 2006).
[23] Sze S. M., Ng K. K., ( 2007), Physics of semiconductor devices, third ed. ( John Wiley and Sons, Inc. publication, 2007).
[24] Sze S. M., (1981), Physics of semiconductor devices, 2nd ed. ( John Wiley- Interscience, 1981).
[25] Ridley B. K., (1963), Specific negative resistance in solids. Proc. Phys. Soc. 82: 954-966.
[26] Ionescu A-M., Riel H., (2011), Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 479: 329-337.
[27]  Wang D., Wang Q., Javey A., Tu R., Daia H., (2003), Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielectrics. Appl. Phys. Lett. 83: 2432-2434.
[28] Greytak A-B., Lauhon L-J., Gudiksen M-S., Liebera C-M., (2004), Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84: 4176-4178.
[29] Ahn Y-H., Parka J., (2007), Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 91: 162102-162104.
[30] Zhang L., Tu R., Dai H., (2006), Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors. Nano Lett. 6: 2785-2789.
[31] International Technology Roadmap for semiconductors,
[32] Gudiksen M., Lauhon L., Wang J., Smith D., Lieber C., (2002), Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature. 415: 617–620.
[33] Bjork M. T., Ohlsson B. J., Sass T., Persson A. I., Thelander C., Magnusson M. H., Deppert K., Wallenberg L. R., Samuelson L., (2002), One dimensional steeplechase for electrons realized. Nano Lett. 2: 87-89.
[34] Goldthorpe I. A., Marshall A. F., McIntyre P. C., (2008), Synthesis and strain relaxation of Ge-Core/Si-shell nanowire arrays. Nano Lett. 8: 4081-4086.
[35] Chen L., Fung W. Y., Lu W., (2013), Vertical nanowire heterojunction devices based on a clean Si/Ge interface. Nano Lett. 13: 5521-5527.
[36] Chau R., Brask J., Datta S., Dewey G., Doczy M., Doyle B., Kavalieros J., Jin B., Metz M., Majumdar A., Radosavljevic M., (2005), Application of high-k gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology. Microelect. Eng. 80: 1-6.
[37] Rahi S. B., Asthana P., Gupta S., (2017), Heterogate junctionless tunnel field-effect transistor: Future of low-power devices. J. Comput. Electron. 16: 30–38.
[38] Saib S. S., Srivastava A., (2015), A junctionless MOSFET with a triple-material gate. J. Comput. Theoret. Nanosci. 12: 2616–2621.
[39] Silvaco, Version 5.15.32. R., (2009),
[40] Wangand C. W, Chu H., Lai Y. S., (2008), Dual workfuction metal gate dielectric. US patent no.7381619B2.
[41] Molaei Imen Abadi R., Sedigh Ziabari S. A., (2016), Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl. Phys. A.122: 616-622.
[42] Gundapaneni S., Ganguly S., Kottantharayil A., (2011), Bulk planar junctionless transistor BPJLT: An attractive device alternative for Scaling. IEEE Electr. Dev. Lett. 32: 261-263.
[43] Molaei Imen Abadi R., Sedigh Ziabari S. A., (2016), Improved performance of nanoscale junctionless tunnel field-effect transistor based on gate engineering approach. Appl. Phys. A. 122: 988-997.
[44] Molaei Imen Abadi R., Sedigh Ziabari S. A., (2017), A comparitive numerical study of junctionless and p-i-n tunneling carbon nanotube field effect transistor. J. Nano Res. 45: 55-75.
[45] Pierret. R. F., (1996), Semiconductor device fundamental. (ADDISON-WESLEY PUBLISHING COMPANY, 2nd edition, (April 12).
[46] Maiti C. K, Armstrong G. A., (2001), Application of silicon-germanium heterostructures devices. (CRC. press, 2001).