Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

Document Type: Reasearch Paper

Authors

1 Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

2 Industrial Nanotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Abstract

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with simulation of the obtained nanostructure solar cells we have studied on improving the absorption spectrum and thus increasing the short circuit current density of them. In order to simulation of light propagation in nanostructures, we have used finite-difference time-domain method. According to the calculation results and with optimization of periodic nanostructure patterns, we have shown that short circuit current density has been increased up to 15.95%. Absorption spectrum, quantum efficiency density and short circuit current density have been discussed for colloidal quantum dot solar cells nanostructures with low and high thickness of absorption layer in this paper.

Keywords

Main Subjects


[1] Service R. F., (1996), New solar cells seem to have power at the right price. Science. 272: 1744–1745.

[2] Chiba Y., Islam A., Watanabe Y., Komiya R., Koide N., Han L., (2006), Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45: 24–28.

[3] Bang J. H., Kamat P. V., (2009), Quantum dot sensitized solar cells. A tale 2009.of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano. 3: 1467–1476.

[4] Hines M. A., Scholes G. D., (2003), Colloidal PbS nanocrystals with size‐tunable near‐infrared emission: Observation of post‐synthesis self‐narrowing of the particle size distribution. Adv. Mater. 15: 1844−1849.

[5] McDonald S. A., Konstantatos G., Zhang S., Cyr P. W., Klem E. J. D., Levina L., Sargent E. H., (2005), Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4: 138−142.

[6] Kim Y., Bicanic K., Tan H., Ouellette O., Sutherland B. R., Arquer F. P., Jo J. W., Liu M., Sun B., Liu M., Hoogland S., Sargent E. H., (2017), Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Lett. 17: 2349–2353.

[7] Chuang C. H., Brown P. R., Bulovic V., Bawendi M. G., (2014), Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13: 796−801.

[8] Zhitomirsky  D., Kramer I. J., Labelle A. J., Fischer A., Debnath R., Jun Pan, Osman M. Bakr, Sargent E. H., (2011), Colloidal quantum dot photovoltaics: The effect of polydispersity. Adv. Mater. 23: 3832−3837.

[9] Arinze E. S., Qiu B., Palmquist N., Cheng Y., Lin Y., Nyirjesy G., Qian G., Thon S. M., (2017), Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference. Opt. Express. 25: 94-101.

[10] Carey G. H., Abdelhady A. L., Ning Z., Thon S. M., Bakr O. M., Sargent E. H., (2015), Colloidal quantum dot solar cells. Chem. Rev. 115: 12732-12763.

[11] Kim J. Y., Voznyy O., Zhitomirsky D., Sargent E. H., (2013), 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances. Adv. Mater. 25: 4986–5010.

[12] Maraghechi P., Labelle A. J., Kirmani A. R., Lan X., Adachi M. M., Thon S. M., Hoogland S., Lee A., Ning Z., Fischer A., Amassian A., Sargent E. H., (2013), The donor-supply electrode enhances performance in colloidal quantum dot solar cells. ACS Nano 7: 6111–6116.

[13] Abraham A. G. P., Kramer I. J., Barkhouse A. R., Wang X., Konstantatos G., Debnath R., Levina L., Raabe I., Nazeeruddin M. K., Grätzel M., Sargent E. H., (2010), Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4: 3374–3380.

[14] Ning Z., Zhitomirsky D., Adinolfi V., Sutherland B., Xu J., Voznyy O., Maraghechi P., Lan X., Hoogland S., Ren Y., Sargent E. H., (2013), Graded doping for enhanced colloidal quantum dot photovoltaics. Adv. Mater. 25: 1719–1723.

[15] Johnston K. W., Abraham A. G. P., Clifford J. P., Myrskog S. H., MacNeil D. D., Levina L., Sargent E. H., (2008), Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92: 151115.

[16] Chang J. A., Rhee J. H., Im S. H., Lee Y. H., Kim H. J., Seok S. I., Nazeeruddin M. K., Gratzel M., (2010), High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett. 10: 2609–2612.

[17] Lee Y. L., Huang B. M., Chien H. T., (2008), Highly efficient CdS esensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20: 6903–6905.

[18] Knipp D., Jovanov V., Tamang A., Wagner V., Salleo A., (2017), Towards 3D organic solar cells. Nano Energy. 31: 582-589.

[19] Rostami A., Andalibi S., Seyyedi S. K., Zabihi S., (2013), Enhanced optical absorption in organic solar cells using metal nano particles. Int. J. Nano Dimens.4: 171-175.

[20] Rath A. K., Bernechea M., Martinez L., Arquer F. P., Osmond J., Konstantatos G., (2012), Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics. 6: 529−534.

[21] Soldan D. P., Lee A., Thon S. M., Adachi M. M., Dong H., Maraghechi P., Yuan M., Labelle A. J., Hoogland S., Liu K., Kumacheva E., Sargent E. H., (2013), Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells. Nano Lett. 13: 1502−1508.

[22] Adachi M. M., Labelle A. J., Thon S. M., Lan X., Hoogland S., Sargent E. H., (2013), Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Sci. Rep. 3: 2928-2932.

[23] Mihi A., Beck F. J., Lasanta T., Rath A. K., Konstantatos G., (2014), Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile. Adv. Mater. 26: 443−448.

[24] Xie Z., Liu S., Qin L., Pang S., Wang W., Yan Y., Yao L., Chen Z., Wang S., Du H., Yu M., Qin G. G., (2015), Extinction coefficient of CH3NH3PbI3 studied by spectroscopic ellipsometry. Opt. Mat. Express. 5: 29–43.

[25] Wang W., Zhang J., Zhang Y., Xie Z., Qin G., (2013), Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications. J. Phys. D: Appl. Phys. 46: 195106.

[26] Xie Z., Wang W., Qin L., Xu W., Qin G. G., (2013), Optical absorption characteristics of nanometer and submicron a-Si : H solar cells with two kinds of nano textures. Opt. Express 21: 18043–18052.

[27]  Yulan F., Abay G., Dinku Y. H., Christopher W. M., Kristina T., Lopez R., (2015), Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells. Opt. Express 23: 779-790.