Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure

Document Type: Reasearch Paper

Authors

Department of Physics, An-Najah National University, Nablus,West Bank, Jordan.

Abstract

In the present work, the exact diagonalization method had been implemented to calculate the ground state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding energy of the ground state had been calculated as a function of confining frequency and magnetic field strength. We  found that the ground state donor binding energy (BE)  calculated at =2  and  , decreases from BE=7.59822  to BE=2.85165 , as we change the impurity position from d=0.0  to d=0.5  ,respectively .In addition, the combined effects of pressure and temperature on the binding energy, as a function of magnetic field strength and impurity position, had been shown using the effective-mass approximation. The numerical results show that the donor impurity binding energy enhances with increasing the pressure while it decreases as the temperature decreases.

Keywords

Main Subjects


[1] Bastard G., (1981), Hydrogenic impurity states in a quantum well: A simple model.   Phys. Rev. B. 24: 4714-4718.

[2] Poonam V., Sanjiv K. M., (2019), Applications of silver nanoparticles in diverse scctors.  Int. J. Nano. Dimens.10: 18-36.

[3] Porras-Montenegro N., Perez-Merchancano S., latge A., (1993), Binding energies and density of impurity states in spherical GaAs‐(Ga, Al)As quantum dots.  J. Appl. Phys. 74: 7624-7628.

[4] Ciftja O., (2013), Understanding electronic systems in semiconductor quantum dots, Phys. Scrip. 88: 058302-058306.

[5] Liang S., Xie W. F., (2011), The hydrostatic pressure and temperature effects on a hydrogenic impurity in a spherical quantum dot.  Eur. Phys. J. B. 81: 79-84.

[6] Holtz O., Qing Xiang Zh., (2004), Impurities confined in quantum structures, 1st ed, (Springer), 5-10.

[7] Dingle R., Stormer H. L., Gossard A. C.,Wiegmann W., (1978), Electron mobilities in modulation‐doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33: 665-671.

[8] Zhu J.-L., (1989), Exact solutions for hydrogenic donor states in a spherically rectangular quantum well. Phys. Rev. B. 39: 8780-8786.

[9] Yuan J.-H., Liu Ch., (2008), Binding energy of an off-center hydrogenic donor in a spherical quantum dot with strong parabolic confinement. Phys. E. 41: 41-44.

[10] Rezaei G., Shojaeian Kish S., (2012), Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Phys. E: Low-dimens. Sys. Nanostruc. 45: 56-60.

[11] Zhu J., Cheng Y., Xiong J., (1990), Exact solutions for two-dimensional hydrogenic donor states in a magnetic field. Phys. Lett. A. 145: 358-362.

[12] Mmadi A., Ahmani K. R, Zorkani I., Jorio A., (2013), Diamagnetic susceptibility of a magneto-donor in Inhomogeneous Quantum Dots.  Superlat. Microstruct. 57: 27-36.

[13] Miller D. A. B., Chemla D. S., Schmitt-Rink S., (1987), Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. Phys. Rev. B. 33: 6976-6980.

[14] Chen H., Li X., Zhou Sh, (1991), Stark shift of hydrogenic impurity states in a quantum well.  Phys. Rev. B. 4: 6220-6226.

[15] MacDonald A. H., Ritchie D. S., (1986), Hydrogenic energy levels in two dimensions at arbitrary magnetic fields.  Phys. Rev. B. 33: 8336-8341.

[16] Chuu D. S, Hsiao C. M., Mei W. N., (1992), Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B. 46: 3898-3904.

[17] Zhu K. D., Gu S. W., (1993), Shallow donors in a harmonic quantum dot in high magnetic fields. Phys. Lett. A. 172: 296-298.

[18] Khordad R., Fathizadeh N., (2012), Simultaneous effects of temperature and pressure on diamagnetic susceptibility of a shallow donor in a quantum antidote. Physica. B. 407: 1301-1305.

[19] John P. A., (2008), Simultaneous effects of pressure and magnetic field on donors in a parabolic quantum dot. Solid State Commun. 147: 296-300.

[20] Perez-Merchancano S. T., Paredes-Gutierrez H., Silva-Valencia J., (2006), Hydrostatic-pressure effects on the donor binding energy in GaAs–(Ga, Al)As quantum dots.  J. Phys: Condens. Matter. 19: 026225-026230.

[21] Kassim H. A., (2007), Study of shallow donor level binding energies confined in a GaAs–Ga1−xAlxAs spherical quantum dot. J. Phys: Condens. Matter. 19: 036204-036209.

[22] Bzour F., Shaer A., Elsaid Mohammad K., (2017), The effects of pressure and temperature on the exchange energy of a parabolic quantum dot under a magnetic field. J. Taibah Univ. Sci. 11: 1122-1134.

[23] Schwarz M. P., Grundler D., Wilde D. M., Heyn M. Ch., Heitmann D. J., (2002), Magnetization of semiconductor quantum dots.  J. Appl. Phys. 91: 6875–6877.

[24] Hijaz E., Elsaid M. K., Elhassan M., (2017), Magnetization of coupled double quantum dot in magnetic fields. J. Comput. Theor. Nanosc. 14: 1700-1705.

[25] Bzour F., Elsaid M. K., Ilaiwi K. F., (2018), The effects of pressure and temperature on the energy levels of a parabolic two-electron quantum dot in a magnetic field. J. King Saud. Univ. 30: 83-90.

[26] Bzour F., Elsaid M. K., Shaer A., (2017), The effects of pressure and temperature on the magnetic susceptibility of semiconductor quantum dot in a magnetic field. App. Phys. Res. 9: 77-82.

[27] Elsaid M., Hijaz E., (2017), Magnetic susceptibility of coupled double GaAs quantum dot in magnetic fields. Acta Phys. Pol. A. 131: 1491-1496.

[28] Elsaid M., Hjaz E., (2017), Energy states and exchange energy of coupled double quantum dot in a magnetic field. Int. J. Nano Dimens. 8: 1-8.

[29] Shaer A., Elsaid M., Elhasan M., (2016), The magnetic properties of a quantum dot in a magnetic field. Turk. J. Phys. 40: 209-218.

[30] Shaer A., Elsaid M., Elhasan M., (2016), Variational calculations of the heat capacity of a semiconductor quantum dot in magnetic fields. Chin. J. Phys .54: 391-397.

[31] Shaer A., Elsaid M., Elhasan M., (2016), Variational calculations of the exchange energy of a two-electron quantum dot in a magnetic field. Jord. J. Phys. 9: 87-93.

[32] Shaer A., Elsaid M., Elhasan M., (2016), Magnetization of GaAs parabolic quantum dot by variation method. J. Phys. Sci. App. 6: 39-46.

[33] Bruno-Alfonso A., Candido L., Hai G-Q., (2010), Two-dimensional electron states bound to an off-plane donor in a magnetic field. J. Phys: Condens. Matter. 22: 125801-125806.

[34] Khajeh Salehani H., Shakouri Kh., Esmaeilzadeh M., Majlesara M. H., (2012), Effects of on-center impurity on energy levels of low-lying states in concentric double quantum rings. Int. J. Nano Dimens. 3: 43-51.

[35] El-Said M., (1994), Effects of applied magnetic field on the energy Levels of shallow donors in a parabolic quantum dot. Phys. B: Condens. Matter. 202: 202-206.