Novel attributes of steep-slope staggered type heterojunction p-channel electron-hole bilayer tunnel field effect transistor

Document Type : Reasearch Paper


Department of Electronic, Faculty of Electrical Engineering Yadegar-e-Imam Khomeini (RAH), Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran.


In this paper, the electrical characteristics and sensitivity analysis of staggered type p-channel heterojunction electron-hole bilayer tunnel field effect transistor (HJ-EHBTFET) are thoroughly investigated via simulation study. The minimum lattice mismatch between InAs/GaAs0.1Sb0.9 layers besides low carrier effective mass of materials provides high probability of tunneling current that eventually boosts the device performance. Unlike the conventional lateral tunnel field effect transistor (TFET), band to band tunneling (BTBT) in HJ-EHBTFET occurs in the electrically doped intrinsic channel and in the vertical direction which may considerably improve the on-state current. Due to the abrupt BTBT and steep transition from the off-state to on-state, subthreshold swing of 2mV/dec with on/off current ratio of 3.85×1013 is obtained. The sensitivity of main electrical parameters is computed via calculating their related standard deviation and mean values with respect to the variation of device critical design parameters. The 2D variation matrix of threshold voltage is computed as a function of top and bottom gate workfunction for determining an optimum value aiming towards competent electrical characteristics. In addition, the sensitivity analysis reveals that the electrical parameters are rarely susceptible to the source doping density, which may considerably solve the limit of dopant solubility in III-V materials. Moreover, HJ-EHBTFET is dramatically unaffected by the variation of gate overlap length and drain voltage, which makes the device have efficient performance in nanoscale regime.


Main Subjects

1. Lin Y. K., Khandelwal S., Duarte J. P., Chang H. L., Salahuddin S., Hu C., (2017), A predictive tunnel FET compact model with atomistic simulation validation. IEEE Transact. Elect. Dev. 64: 599-605.
2.   Ahangari Z., (2018), Performance investigation of a semi-junctionless type II heterojunction tunnel field effect transistor in nanoscale regime. Micro & Nano Lett. 13: 1165-1169.
3.   Boucart K., Ionescu A. M., (2007), Double-gate tunnel FET with high-$kappa $ gate dielectric. IEEE Transact. Elect. Devic. 54: 1725-1733.
4. Khorramrouz F., Sedigh Ziabari S. A., Heydari A., (2018), Analysis and study of geometrical variability on the performance of junctionless tunneling field effect transistors: Advantage or deficiency?.  Int. J. Nano Dimens. 9: 260-272.
5.   Hanna A. N., Fahad H. M., Hussain M. M., (2015), InAs/Si hetero-junction nanotube tunnel transistors. Scientific Rep. 5: 9843-9847.
6.   Wang Y., Liu Y., Han G., Wang H., Zhang C., Zhang J., Hao Y., (2017), Theoretical investigation of GaAsBi/GaAsN tunneling field-effect transistors with type-II staggered tunneling junction. Superlatt. Microstruc. 106: 139-146.
7.   Shih P. C., Hou W. C., Li J. Y., (2017), A U-gate InGaAs/GaAsSb heterojunction TFET of tunneling normal to the gate with separate control over ON-and OFF-state current. IEEE Elect. Dev. Lett. 38: 1751-1754.
8.   Pown M., Lakshmi B., (2017), Performance analysis of InAs-and GaSb-InAs-based independent gate tunnel field effect transistor RF mixers. J. Comput. Elect. 16: 676-684.
9.   Lattanzio L., De Michielis L., Ionescu A. M., (2011), Electron-hole bilayer tunnel FET for steep subthreshold swing and improved ON current. In 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC) (pp. 259-262). IEEE.
10. Alper C., Palestri P., Padilla J. L., Ionescu A. M., (2016), The electron-hole bilayer TFET: Dimensionality effects and optimization. IEEE Transac. Elect. Dev. 63: 2603-2609.
11. Lattanzio L., De Michielis L., Ionescu A. M., (2012), The electron–hole bilayer tunnel FET. Solid-State Electron. 74: 85-90.
12. Revelant A., Villalon A., Wu Y., Zaslavsky A., Le Royer C., Iwai H., Cristoloveanu S., (2014), Electron-hole bilayer TFET: Experiments and comments. IEEE Transac. Elect. Dev. 61: 2674-2681.
13. Loan S. A., Alharbi A. G., Rafat M., (2018), Ambipolar leakage suppression in electron–hole bilayer TFET: Investigation and analysis. J. Comput. Electron. 17: 977-985.
14. Padilla J. L., Alper C., Gamiz F., Ionescu A. M., (2016), Switching behavior constraint in the heterogate electron–hole bilayer tunnel FET: The combined interplay between quantum confinement effects and asymmetric configurations. IEEE Transact. Elect. Dev. 63: 2570-2576.
15. Padilla J. L., Alper C., Gámiz F., Ionescu A. M., (2014), Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor. Appl. Phys. Lett. 105: 082108-082112.
16. Kim S. Y., Seo J. H., Yoon Y. J., Lee H. Y., Lee S. M., Cho S., Kang I. M., (2015), Design and analysis of CMOS-compatible III–V compound electron–hole bilayer tunneling field-effect transistor for ultra-low-power applications. J. Nanosc. Nanotechnol. 15: 7486-7492.
17. Jeong W. J., Kim T. K., Moon J. M., Park M. G., Yoon Y. G., Hwang B. W., Lee S. H., (2015), Germanium electron–hole bilayer tunnel field-effect transistors with a symmetrically arranged double gate. Semicond. Sci. Technol. 30: 035021-035026.
18. Alper C., Lattanzio L., De Michielis L., Palestri P., Selmi L., Ionescu A. M., (2013), Quantum mechanical study of the germanium electron–hole bilayer tunnel FET. IEEE Transact. Elect. Dev. 60: 2754-2760.
19. Padilla J. L., Medina-Bailon C., Marquez C., Sampedro C., Donetti L., Gamiz F., Ionescu A. M., (2018), Gate leakage tunneling impact on the InAs/GaSb heterojunction electron-hole bilayer tunneling field-effect transistor. IEEE Transac. Elect. Dev. 99: 1-8.
20. Kim S., Choi W. Y., Park B. G., (2018), Vertical-structured electron-hole bilayer tunnel field-effect transistor for extremely low-power operation with high scalability. IEEE Transac. Elect. Dev. 65: 2010-2015.
21. Zhu Z., Zhu H., Xu M., Zhong J., Zhao C., Chen D., Ye T., (2014), A novel fin electron–hole bilayer tunnel field-effect transistor. IEEE Transact. Nanotech. 13: 1133-1137.
22. ATLAS User Manual, Santa Clara, USA: Silvaco International, 2015.
23. Tura A., Zhang Z., Liu P., Xie Y. H., Woo J. C., (2011), Vertical silicon pnpn tunnel nMOSFET with MBE-grown tunneling junction. IEEE Transact. Elect. Devic. 58: 1907-1913.
24. Ahangari Z., Fathipour M., (2013), Tight-binding study of quantum transport in nanoscale GaAs Schottky MOSFET. Chinese Phys. B. 22: 098502-098506.
25. Ahangari Z., (2016), Impact of Indium mole fraction on the quantum transport of ultra-scaled InxGa1–xAs double-gate Schottky MOSFET: Tight-binding approach. Appl. Phys. A. 122: 69-75.