Investigations on structural, optical, and AC conductivity of Polyaniline/Manganese Dioxide nanocomposites

Document Type : Reasearch Paper


1 Department of Physics, JP College of Arts and Science, Agarakattu, Tenkasi - 627852, Tamil Nadu, India.

2 School of Science, Tamil Nadu Open University, Chennai-600015. Tamil Nadu, India.

3 PG and Research Department of Physics, The M.D.T Hindu College, Tirunelveli -627010. Tamil Nadu, India.

4 Department of Physics & Research Center, Women’s Christian College, Nagarcoil -62900l. Tamil Nadu, India.


A Polyaniline/Manganese dioxide (PANI/MnO2) nanocomposite contains five weight percentages of MnO2. It has been successfully prepared by in situ polymerization. The structural, optical, and conductivity of nanocomposites remain relative to changes with respect to the weight percentage of MnO2. The structural, morphological, optical, and electrical conductivity investigation of pure MnO2, pure PANI, and nanocomposites were done with powder XRD, HRTEM, SEM, FT-IR, UV and Impedance spectra. XRD results of the PANI/MnO2 nanocomposites say that the crystalline structure is converted into a very less crystalline structure due to the incorporation of MnO2 which is inside PANI chain. The HRTEM and SEM images are confirmed to the nanocomposite formation, morphology studies and also supported to the XRD results. From the optical spectra, MnO2 nanoparticles have been impressed in the surface of PANI. It works as the compensator in the formation of nanocomposites. UV spectral analysis reveals that the absorption of MnO2 modifies the absorption wavelength of under visible light in whole range. The absorption wavelength of nanocomposites is 288 nm and 337 nm. AC electrical conductivity of the prepared nanocomposites from impedance spectroscopy was carried out and compared with pure materials. The AC conductivity of as-prepared nanocomposites has been analyzed in the range of 298 K to 423 K. The AC conductivity of nanocomposites varies depending upon a change of logarithmic frequency.


Main Subjects

[1]     Camargo P. H. C., Satyanarayana K. G., Wypych F., (2009), Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12: 1-39.
[2]     Ali A., Zafar H., Zia M., Haq I., Phull A. R., Ali J. S., Hussain A., (2016), Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9: 49–67.
[3]     Li S., Lin M. M., Toprak M. S., Kim D. K., Muhammed M., (2010), Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1: 1-19.
[4]     Jancar J., Douglas J. F., Starr F. W., Kumar S. K., Cassagnau P., Lesser A. J., Sternstein S. S., Buehler M. J., (2010), Current issues in research on structure property relationships in polymer nanocomposites. Polymer. 51: 3321-3343.
[5]     Bai H., Shi G., (2007), Gas sensors based on conducting polymers. Sensors. 7: 267-307.
[6]     Lany S., (2015), Semiconducting transition metal oxides. J. Phy.: Condens. Matter. 27: 1-36.
[7]     Singh., Park I. B., Su-Moon., (2015), Synthesis of β-MnO2 nanowires and their electrochemical capacitive behaviour. Indian J. Chem. 54A: 46-51.
[8]     Esam A. G., Mohamed A. M., Amr E. N., Yara A. S., (2017), Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode. Int. J. Nano Dimens. 8: 89-96.
[9]     Tan D. Z. W., Cheng H., Nguyen S. T., Duong H. M., (2014), Controlled synthesis of MnO2 /CNT nanocomposites for supercapacitor applications. Mater. Technol. 29: A107-A113.
[10] Fanhui M., Xiuling Y., Ye Zh., Pengchao S., (2013), Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive properety. Nanoscale Res. Lett. 8: 179-186.
[11] Ke-Qiang D., (2009), Cyclic voltammetrically prepared MnO2‐Polyaniline composite and its electrocatalysis for oxygen reduction reaction (ORR). J. Chin. Chem. Soc. 56: 891-897.
[12] Saadat L., Sadeghvandi F., (2014), Synthesis & study of Polyethylene/Polyaniline/Montmorillonite ductile nano composites properties. Int. J. Nano Dimens. 5: 255-265.
[13] Vivekanandan J., Ponusamy V., Mahudeswaran  A., Vijayanand P. S., (2011), Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archiv. Appl. Sci. Res. 3: 147-153.
[14] Deepshika A., Tinku B., (2010), Development of transducer matrices based upon nanostructured conducting polymer for application in biosensors. Ind. J. Experimen. Biol. 48: 1053-1062.
[15] Michira L., Akinyeye R., Somerset E., Klink M. J., Sekota M., Al-Hmed A., Baker P. G. L., Iwuoha E., (2007), Synthesis, characterisation of novel polyaniline nanomaterials and application in amperometric biosensors. Makromol. Chem. Macromol. Symp. Makromolekulare Chemie. 255: 57-69.
[16] Li Y., Wang J., Zhang Y., Banis M. N., Liu J., Geng D., Li R., Sun X., (2012), Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J. Colloid Interf. Sci. 369: 123-128.
[17] Harish K., Manisha M., Poonam S., (2013), Synthesis and characterization of MnO2 nanoparticles using Co-precipitation technique. Int. J. Chem. Chem. Eng. 3: 155-160.
[18] Senthilkumar M., Balamurugan V., Jayapragash B. G., (2013), Hydrothermal synthesis of MnO2 nanoparticles using Teflon lined Autoclave. Res. J. Pharmac. Biol. Chem. Sci. 4: 1627-1632.
[19] Devaraj S., Munichandraiah N., (2007), Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J. Electrochem. Soc. 154: A80-A88.
[20] Srinivas C. H., Srinivasu D., Kavitha B., Narsimlu N., Siva Kumar K., (2012), Synthesis and characterization of nano size conducting polyaniline. IOSR J. Appl. Phys. 1: 12-15.
[21] Abuli A., Yang G. H., Okitso K., Zhu J. J., (2014), Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO4 in water under different pH conditions. Ultrason. Sonochem. 21: 1629-1634.
[22] Shen J., Liu A., Tu Y., Wang H., Jiang R., Ouyang J., Chen Y., (2012), Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochim.  Acta. 78: 122-133.
[23] Sridevi V., Malathi S., Devi C. S., (2011), Synthesis and characterization of polyaniline/gold nanocomposites. Chem. Sci. J. 26: 1-6.