Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Document Type : Reasearch Paper


Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.


Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. By considering two-dimensional arrays of QCA cells, fault tolerance properties of such block full-adder cell can be analyzed with misalignment, missing and dislocation cells. To verify the functionality of the proposed device, some physical proofs and computer simulations using QCADesigner are provided.  Both simulation results and physical relations confirm our claims and its usefulness in designing fault-tolerant digital circuits.


Main Subjects

[1] Tougaw P. D., Lent C. S., (1994), Logical devices implemented using quantum cellular automata.  J. Appl. Phys. 75: 1818-1825.
[2] Cho H., Swartzlander E. E., (2007), Adder designs and analyses for quantum-dot cellular automata. IEEE Transactions on Nanotechnol. 6: 374-384.
[3] Azghadi M. R., Kavehei O., Navi K., (2007), A novel design for quantum-dot cellular automata cells and full-adders. J. Appl. Sci. 7: 3460-3468.
[4] Farazkish R., Khodaparast F., Navi K., Jalali A., (2010), Design and characterization of a novel inverter for nanoelectronic circuits. Int. Conf. Nanotechnol.: Fundamen. Applic. 219.
[5] Farazkish R., Navi K., (2012), New efficient five-input majority gate for quantum-dot cellular automata. J. Nanopart. Res. 14: 1252-1258.
[6] Farazkish R., Sayedsalehi S., Navi K., (2012), Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J. Nanotechnol. Article ID 943406.
[7] Farazkish R., (2014), A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanopart. Res. 16: 2259-2268.
[8] Farazkish R., Khodaparast F., (2015), Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microp. Microsys. J. 39: 426-433.
[9] Farazkish R., (2015), A new quantum-dot cellular automata fault-tolerant full-adder. J. Comput. Electr. 14: 506–514.
[10] Farazkish R., (2017), Fault-tolerant adder design in quantum-dot cellular automata. Int. J. Nano Dimens. 8: 40-48.
[11] Roohi A., Khademolhosseini H., Sayedsalehi S., Navi K., (2014), A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comp. Electron. 13: 701-708.
[12] Angizi S., Alkaldy E., Bagherzadeh N., Navi K., (2014), Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electr. 10: 259-271.
[13] Roohi A., DeMara R. F., Khoshavi N., (2015), Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelect.  J. 46: 531–542.
[14] Hashemi S., Farazkish R., Navi K., (2013), New quantum dot cellular automata cell arrangements.  J. Comp.  Theoret. Nanosc. 10: 798–809.
[15] Navi K., Moayeri M., Faghih Mirzaee R., Hashemipour O., Mazloom Nezhad B., (2009), Two new low-power full-adders based on majority-not gates. Microelect. J. 40: 126-130.
[16] Navi K., Farazkish R., Sayedsalehi S., Azghadi M. R., (2010), A new quantum-dot cellular automata full-adder. Elsevier Microelect.  J. 40: 126-130.
[17] Navi K., Sayedsalehi S., Farazkish R., Azghadi M. R., (2010), Five-Input majority gate a new device for quantum-dot cellular automata.  J. Comp. Theor. Nanosc. 7: 1546-1553.
[18] Zhang R., Walnut K., Wang W., Jullien G., (2004), A method of majority logic reduction for quantum cellular automata. IEEE Transact. Nanotechnol. 3: 443-450.
[19] Zhi H., Zhang Q., Haruehanroengra S., Wang W., (2006), Logic optimization for majority gate based nanoelectronic circuits. Int. Symp. Circu. Sys. ISCAS: 1307-1310.
[20] Rezaei A., Saharkhiz H., (2016), Design of low power random number generators for quantum-dot cellular automata. Int. J. Nano Dimens. 4: 308-320.
[21] Azari A., Zabihi S. A., Seyyedi S. K., (2012), Conductance in quantum wires by three quantum dots arrays. Int. J. Nano Dimens. 2: 213-216.
[22] Cho H., Swartzlander E. E., (2009), Adder and multiplier design in quantum-dot cellular automata. IEEE Transact. Comput. 58: 721-727.
[23] Wang W., Walus K., Jullien G. A., (2003), Quantum-dot cellular automata adders. Proceeding of the IEEE Transact.Nanotechnol.
[24] Srivastava S., Sarkar S., Bhanja S., (2008), Estimation of upper bound of power dissipation in QCA Circuits. IEEE Transact.Nanotechnol. ID TNANO-00043-2008.R1.
[25] Hassan M. K., Nahid N. M., Bahar A. N., Bhuiyan M. M. R., Abdullah-Al-Shafi M., Ahmed, K., (2017), Dataset demonstrating the temperature effect on average output polarization for QCA based reversible logic gates. Data in Brief. 13: 713-716. 
[26] Bahar A. N., Waheed S., (2016), Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. Springer Plus. 5: 1-10.
[27] Abdullah-Al-Shafi M., Bahar, A. N., (2016), Optimized design and performance analysis of novel comparator and full adder in nanoscale. Cogent Engineering. 3: 1237864-1237869.
[28] Bahar A. N., Waheed S., Hossain N., Asaduzzaman M., (2017), A novel 3-input XOR function implementation in quantum-dot cellular automata with energy dissipation analysis. Alexandria Engineer.  J. 56: 2017.
[29] Bahar A. N., Rahman M. M., Nahid N. M., Hassan M. K., (2017), Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata. Data in Brief. 10: 557–560.
[30] Abdullah-Al-Shafi M., Bahar A. N., Ahmad P. Z., Ahmad F., Bhuiyan M. M. R.,  Ahmed K., (2017), Power analysis dataset for QCA based multiplexer circuits. Data in Brief. 11: 593-596.
[31] Chougule P. P., Sen B., Mukherjee R., Patil P. S., Kamat R. K., Dongale T. D., (2017), A processing in memory realization using quantum dot cellular automata (QCA): Proposal and implementation. J. Nano Elect. Phys.  9: 01021-01028.
[32] Chougule P. P., Sen B., Dongale T. D., (2017), Realization of processing In-memory computing architecture using quantum dot cellular automata. Microprocess. Microsyst. 52: 49-58.
[33] Armstrong C. D., Humphreys W. M., (2003), The development of design tools for fault tolerant quantum dot cellular automata based logic, 2nd Int’l Workshop on Quantum Dots for Quantum Computing and Classical Size Effect Circuits.
[34] Armstrong C. D., Humphreys W. M., Fijany A., (2003), The design of fault tolerant quantum dot cellular automata based logic, 11th NASA Symposium on VLSI Design.
[35] Beard M. J., (2006), Design and simulation of fault-tolerant quantum-dot cellular automata (QCA) NOT gates. M. S. Thesis in Wichita State University.
[37] Dalui M., Sen B., Sikdar B. K., (2010), Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Applic. 1: 81-87.
[37] Fijany A., Toomarian B. N., (2001), New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3: 27-37.
[38] Sen B., Ganeriwal S., Sikdar B. K., (2013), Reversible logic-based fault-tolerant nanocircuits in QCA. ISRN Electronics. Article ID 850267.
[39] Tahoori M. B., Momenzadeh M., Huang J., Lombardi F., (2004), Defects and faults in quantum cellular automata at nanoscale. IEEE VLSI Test Symposium 4.
[40] Lent C. S., Tougaw P. D., (1993), Lines of interacting quantum-dot cells: A binary wire. J. Appl. Phys. 6227-6233.
[41] Huang J., Momenzadeh M., Tahoori M. B., Lombardi F., (2004), Design and characterization of an And-Or-Inverter (AOI) gate for QCA implementation. GLSVLSI. 26-28.
[42] Lent C. S., Tougaw P. D., (1996), Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80: 4722-4736.
[43] Johnson B. W., (1988), Design & analysis of fault tolerant digital systems. Addison-Wesley Longman Publishing Co. ISBN: 0-201-07570-9.
[44] Halliday D., Resnick A., (2004), Fundamentals of physics, 7th Edition New York: John Wiley & Sons, Inc, Part 1, Chapters 3-6.
[45] QCADesigner Home Page <>.
[46] Walus K., Dysart T. J., Jullien G. A., Budiman R. A., (2004), QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata.  IEEE Transact. Nanotechnol. 3: 26–31.