Hydrothermal synthesis of Copper nanoparticles, characterization and their biological applications

Document Type: Reasearch Paper


1 Department of Chemistry, Malla Reddy Engineering College, Maisammaguda, Secunderbad, Telangana State 500100, India.

2 Department of Chemistry, PG Centre Wanaparthy, Palamuru University, Mahabub Nagar, TS, India.

3 Department of Information Materials Laboratory (IMSL), School of Chemical Engineering, Yeuungnam University, Gyeongsam 38541, Republic of Korea.

4 Department of Virology, Sri Venkateswra University, Tirupathi, A.P, India.


We report an ecofriendly novel method for copper nanoparticles (CuNPs) synthesis by hydrothermal processes using an activated carboxymethyl gum of locally available medicinal plant Cochlospermum gossypiumas capping agent. The synthesized CuNPs characterized by Ultraviolet - visible Spectroscopy (UV-Vis), Fourier – transform infrared Spectroscopy (FTIR), and Transmission Electron Microscopy (TEM) and X-ray diffraction techniques (XRD). The XRD results showed a face-centered cubic structure with (111) as the prepared orientation. The CuNPs showed good antibacterial and antifungal activity against pathogenic strains like E. coli, Bacillus cereus, Bacillus subtilis and Candida albicans, Candida parapsilosi, Aspergillus Niger and Aspergillus oryzae respectively. A result of this study indicates that the CuNPs has remarkable potential antimicrobial property. It will be used in treating infectious diseases and also use full in biomedical application.


Main Subjects

[1]    Ajeet K., Swati A., Amit S., Arnab de., (2012),  Coppernanoparticulates in guar-gum: A recyclable catalytic system for the Huisgen [3+2]-Cycloaddition of Azides and Alkynes without additives under ambient conditions. Green Chem. 14: 3451-3452.

[2]    Bhagavanth R. G., Ramakrishna D., Madhusudhan A., Venkatesham M., Veerabhadram G., (2015), Catalytic Reduction of p-Nitrophenol and Hexacyanoferrate (III) by Borohydride using green synthesized gold nanoparticles. J. Chinese Chem. Soc. 17: 420-428.

[3]    Ashok K., Munish A., (2012), Carboxymethyl gum kondagogu: Synthesis, characterization and evaluation as mucoadhesive polymer. Carbohyd. Poly. 90: 637– 643.

[4]    Kapoor S., Mukherjee T., (2003), Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone).  Chem. Phys. Lett. 370: 83–87.

[5]    Gaber M., El-SayedY S., El-Baradie K., Fahmy R. M., (2013), Cu(II) complexes of monobasic bi- or tridentate (NO, NNO) azo dye ligands: Synthesis, characterization and interaction with Cu-nanoparticles. J. Molec. Struc. 1032: 185–194.

[6]    Park B. K., Jeong S., Kim V., Moon J., Lim S., Kim J. S., (2007), Synthesis and size control of monodisperse copper nanoparticles by polyol method.  J. Colloid and Interf. Sci. 311: 417-424.

[7]    Chowdhury M. N. K., Beg M. D. H., Khan M. R., Fmina M., (2013), Synthesis of copper nanoparticles and their antimicrobial performances in natural fibres. Mater. Lett. 98: 26–29.

[8]    Hatakeyama Y., Morita T., Takahashi S., Onishi K., Nishikawa K., (2011), Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape. J. Phys. Chem. C. 115: 3279–3285.

[9]    Kapoor S., Mukherjee T., (2003), Photochemical formation of copper nanoparticles in poly(N-vinylpyrrolidone).  Chem. Phys. Lett. 370: 83–87.

[10] Haitao Zh., Canying Zh., Yansheng Y., (2005), Novel synthesis of copper nanoparticles: Influence of the synthesis conditions on the particle size. Nanotechnol. 16: 3079–3083.

[11] Bhagavanth R. G., Rajkumar B., Ramakrishna D.,  Girija M. K.,  Veerabhadram G., (2017), Facile green Synthesis of gold nanoparticles with carboxymethyl cum karaya, selective and sensitive colorimetric detection of copper (II) ions. J. Clust. Sci. 28: 2873–2890.

[12] Rao C. N. R., Cheetham A. K., (2001), Science and technology of nanomaterials: Current status and future prospects. J. Mater. Chem. 11: 2887–2894.

[13] Valodkar M., Rathore P. S., NJadeja R., Thounaojam M., Devkar V. R., Thakore S., (2012), Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J. Hazard. Mater. 201: 244–249.

[14] C˘alinescu I., Martin D., Ighigeanu D., (2014), Nanoparticles synthesis by electron beam radiolysis. Cent. Europ. J. Chem. 12: 774–781.

[15] Kalyanaraman R., Yoo S., Krupashnkara M. S., Sudarshan T. S., Dowding R. J., (1998), Synthesis and Consolidation of Iron Nanopowders. Nanostruc. Mater. 10: 1379-1392.

[16] Asim U., Shahid N., Naveed R., Muhammad Sh. R., Muhammad I., (2014), A green method for the synthesis of Copper nanoparticles using L-ascorbic acid. Revista Matéria. 19: 197-203.

[17] Bali R., Razak N., Lumb A., (2006), The synthesis of metal nanoparticles inside live plants. Int. Conf.  Nanosci. Nanotechnol. 224-227.

[18] Zhou R., Wu X., Hao X., Li H., Raw W., (2008), Influences of surfactants on the preparation of Copper nanoparticles by electron beam irradiation. Nuclear Instruments and Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms. 266: 599-603.

[19] Lee Y., Choi J. R., Lee K. J., (2008), Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotech. 19: 41-52.

[20] Chiang C. L., Chang R. C., Chiu Y. C., (2007), Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol-gel method. Thermochim. Acta. 453: 97-104.

[21]Matthew A. A., Cameron W. E., Colin L. R., (2006), Green chemistry and the health implications of nanoparticles, the royal society of chemistry. Green Chem. 8: 417–432.

[22] Pornanong A., Nipaporn B., Juthamas R., Sanong E., (2014), Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res. Lett. 9: 1-8.

[23] Keya L., Lakshmi K. M., Masayuki S., Daisuke N. H., Takehiko S., Maheswarana H., (2012), Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 14: 3164-3174.

[24] Rajkiran R. B., Veera B. N., Pratap R. K., (2015), Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J. Biolog. Sci. 22: 637–644.

[25] Zain N. M., Staply A. G. F., Shama G., (2014), Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd. Polym. 112: 195–202.

[26] Argueta-Figueroa L., Morales-Luckie R. A., Scougall- VilchisR J., Olea-Mej´ıa F., (2014), Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog. in Nat. Science: Mater. Int. 24: 321– 328.

[27] Camacho-Flores B. A., Martínez-Álvarez O., Arenas-Arrocena M. C., Garcia-Contreras R.,  Argueta-Figueroa L., de la Fuente-Hernández J., Acosta-Torres L. S., (2015), Copper: Synthesis techniques in nanoscale and powerful application as an antimicrobial agent. J. Nanomater. 2015: 1-10.

[28] Shankar S., Rhim J. W., (2014), Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater. Lett. 132: 307–311.