Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

Document Type: Reasearch Paper


Department of Electrical Engineering, Nour Branch, Islamic Azad University, Nour, Iran.


In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less than the work-function of the intrinsic carbon nanotube. The simulation is carried out in the ballistic regime using the non-equilibrium Green's function (NEGF) in the mode space approach. The simulation results show that the proposed structure has a better am-bipolar behavior and less OFF current compared to a conventional junctionless structure with the same dimensions. In the new structure, the hot carrier effect is also reduced due to the reduced electric field near the drain, and with regard to a peak in the electric field curve at the junction of two gates, the gate control on the channel will be increased.


Main Subjects

[1] Sedigh Ziabari S. A, Tavakoli Saravani M. J., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.   

[2] Talukdar K,  Bhushan M,  Kasi Viswanathc A,  Mitrad A. K., (2013), Simulation study of the performance of a biologically sensitive field effect transistor.  Int. J.Nano Dimens. 4: 85-89.

[3] Xie Q., Lee C. J., Xu J., Wann C., Sun J. Y. C., Taur Y., (2013), Comprehensive analysis of short-channel effects in ultrathin SOI MOSFETs. IEEE Trans. Electron Devices. 60: 1814-1819.

[4] Novoselov K. S., Geim A. K., Morozov S. V., (2004), Electric field effect in atomically thin carbon films. Science. 306: 666–669.

[5] NOVOSELOV K. S., (2011), Graphen: Materials in the finland. Int. J. Mod. Phys. B.  25: 4081–4106.

[6] Nomura K., MacDonald A. H., (2007), Quantum transport of massless dirac fermions. Phys. Rev. Lett. 98: 76602-76609.

[7] Han M. Y., Zyilmaz B., Zhang Y., Kim P., ( 2007), Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett.  98: 206805-206809.

[8] Zhou S. Y., Gweon G.-H., Fedorov  A. V., ( 2007), Substrate-induced band gap opening in epitaxial graphene. Nat. Mater. 6: 770-775.

[9] Abband Pashaki R., Sedigh Ziabari S. A., (2015), Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET.  Int. J. Nano Dimens. 6: 377-383.

[10] Marulanda J. M., ‘Carbon nanotubes’ (InTech, 2010).

[11] Algul B. P., Kodera T., Oda S., Uchida K., (2011), Study on device parameters of carbon nanotube field electron transistors to realize steep subthreshold slope of less than 60 mV/Decade. Jpn. J. Appl. Phys. 50: 04DN01.

[12] Medury A. S., Bhat K. N., Bhat N., ( 2012), Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor. J. Appl. Phys. 112: 024513-024518.

[13] Vaddi R., Agarwal R. P., Dasgupta S., (2012), Compact modeling of a generic double-gate MOSFET with gate–S/D underlap for subthreshold operation. IEEE Trans. Electron Devices.  59: 2846–2849.

[14] Baruah R. K., (2012), Silicon vs. germanium junctionless double-gate field effect transistor. Int. Conf. on Devices.Circuits and Systems (ICDCS)’ (IEEE, 2012). 235–238

[15] Woo J.-H., Choi J.-M., Choi Y.-K., (2013), Analytical threshold voltage model of junctionless double-gate MOSFETs with localized charges. IEEE Trans. Electron Devices.  60:  2951–2955.

[16] Colinge J. P., Kranti A., Yan, R., (2011), Junctionless nanowire transistor (JNT): Properties and design guidelines. Solid. State. Electron. 65-66: 33–37.

[17] BaruahR. K., Paily R. P., (2014), A dual-material gate junctionless transistor with high- (k) spacer for enhanced analog performance. IEEE Trans. Electron Devices. 61: 123–128.

[18] Haijun L., Lining Zh., Yunxi Zh., ( 2012), A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron Devices. 59: 1829–1836.

[19] Lee C.-W., Borne A., Ferain I., (2010), High-temperature performance of silicon junctionless MOSFETs. IEEE Trans. Electron Devices.  57: 620–625.

[20] Dehdashti Akhavan N., Ferain I., Razavi P., Yu R., Colinge J.-P., (2011), Improvement of carrier ballisticity in junctionless nanowire transistors. Appl. Phys. Lett. 98: 103510-103516.

[21] Pourian P., Yousefi R., Ghoreishi S. S., (2016), Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: Numerical study. Superlat. Microstruct. 93: 92-100.

[22] Saito R., Dresselhaus G., Dresselhaus M. S., (2016), Physical properties of carbon nanotubes. (PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1998).

[23] Datta S., Van Houten H., (1996), Electronic transport in mesoscopic systems. Phys. Today. 49: 70-76.

[24] Guo J. G. J., Datta S., Anantram M. P., Lundstrom M., (2004), Atomistic simulation of carbon nanotube field-effect transistors using non-equilibrium Green’s function formalism. Electrical Performance of Electronic Packaging IWCE-04’ (IEEE, 2004). 71–72.

[25] Datta S., (2005), Quantum transport : atom to transistor. (Cambridge University Press, 2005).

[26] Guo J., Datta S., Lundstrom M., Anantam M. P., (2004), Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2: 257–276.

[27] Javey A., Lundstrom M., (2004), Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. IEEE Int. Electron Devices Meet. IEEE. 703-706.

[28] Yoon Y., (2007), Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Trans. Electron Devices. 54: 1280-1287.