The role of mechanical engineering in the development of nano drug delivery systems; a review

Document Type : Review


1 Faculty of mechanical engineering, Amirkabir University of Technology, Tehran, Iran.

2 Matin-Plast Company, Azarshahr, East Azerbaijan, Iran.

3 Department of pharmaceutical nanotechnology, Faculty of pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

4 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

5 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.


The pharmaceutical area can present some opportunities for mechanical engineers to develop a vast type of dosage forms particularly novel forms like nanoparticles. The classical education of mechanics needs some alterations to prepare appropriate education courses in this regard. In order to present some views about this issue, we collect some information around the importance of mechanical engineering in the designing of nano-based drug delivery systems. A review process was performed using National Center for Biotechnology Information (NCBI) by means of MeSH keywords such as mechanical engineering, pharmaceutical dosage form, drug delivery system, nanoparticles and nanotechnology. The searches included full-text publications written in English, published in PubMed central over a 10-year period (2006-2016). The abstracts, reviews, books with no experimental data as well as studies without explicit involving of mechanical engineering in the designing of drug delivery systems were excluded from the analysis. The reviewed literature revealed that there is good progress in application of mechanical engineering in the designing of nano-based drug delivery systems in recent years. However, more clinically and in vivo attempts are needed in this regard. This information may present some beneficial views for graduate students as well as academic curriculum designers about the importance of mechanical engineers in pharmaceutical area.


Main Subjects

1.      Rantanen J., Khinast J., (2015), The future of pharmaceutical manufacturing sciences. J. Pharm. Sci.  104: 3612-3638.
2.      Ali I. L., Abdel Halim S., Sanad S. G., (2017), Theoretical calculations of solvation 12-Crown-4 (12CN4) in aqueous solution and its experimental interaction with nano CuSO4. Int. J. Nano Dimens.  8: 142-158.
3.      Dabbagh A., Abdullah B. J., Abdullah H., Hamdi M., Kasim N. H., (2015), Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. J. Pharm. Sci.  104: 2414-2428.
4.      Wang Y., (2009), Engineering strategies for drug delivery [Introduction to the special issue]. Eng. Med. Biol. Mag. 28: 10-11.
5.      Bao G., Bazilevs Y., Chung J. H., Decuzzi P., Espinosa H. D., Ferrari M., Gao H., Hossain S. S., Hughes T. J., (2014), USNCTAM perspectives on mechanics in medicine. J. R. Soc. Interface.  11(97):20140301.
6.      Mukhopadhyay S., Madhav N. S., Upadhyaya K., (2017), Development and evaluation of bio-nanoparticles as novel drug carriers for the delivery of Donepezil. Int. J. Nano Dimens.  8: 9-17.
7.      Roul J., Sahoo S. K., Mohapatra R., (2013), Design and characterization of biodegradable polymer-clay nanocomposites prepared by solution mixing technique. Int. J. Nano Dimens.  4: 135-139d.
8.      Khanahmadzadeh S., Tarigh A., (2017), Nano-sized Amitriptyline (AT) imprinted polymer particles: Synthesis and characterization in Silicon oil. Int. J. Nano Dimens.  8: 182-186.
9.      Dizaj S. M., Barzegar-Jalali M., Zarrintan M. H., Adibkia K., Lotfipour F., (2015), Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharm. Sci.  20: 175-182.
10.    Maleki Dizaj S., Lotfipour F., Barzegar-Jalali M., Zarrintan M.-H., Adibkia K., (2016), Application of Box–Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles. Artif Cells Nanomed. Biotechnol. 44: 1475-1481.
11.    Alici G., (2015), Towards soft robotic devices for site-specific drug delivery. Expert Rev. Med. Devices.  12: 703-715.
12.    Aw M. S., Khalid K. A., Gulati K., Atkins G. J., Pivonka P., Findlay D. M., Losic D., (2012), Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. Int. J. Nanomed.  7: 4883-4892.
13.    Baumgartner R., Eitzlmayr A., Matsko N., Tetyczka C., Khinast J., Roblegg E., (2014), Nano-extrusion: A promising tool for continuous manufacturing of solid nano-formulations. Int. J. Pharm.  477: 1-11.
14.    Dizaj S. M., (2013), Preparation and study of vitamin A palmitate microemulsion drug delivery system and investigation of co-surfactant effect. J. Nanostruct. Chem.  3: 1-6.
15.    Dizaj S. M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.-H., Adibkia K., (2016), Physicochemical characterization and antimicrobial evaluation of gentamicin-loaded CaCO3 nanoparticles prepared via microemulsion method. J. Drug. Deliv. Sci. Technol.  35: 16-23.
16.    Arruebo M., (2012), Drug delivery from structured porous inorganic materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.  4: 16-30.
17.    Carlsen R. W., Edwards M. R., Zhuang J., Pacoret C., Sitti M., (2014), Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab. Chip.  14: 3850-3859.
18.    Agarwal R., Singh V., Jurney P., Shi L., Sreenivasan S. V., Roy K., (2013), Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. USA. 110: 17247-52.
19.    Altomare L., Guglielmo E., Varoni E. M., Bertoldi S., Cochis A., Rimondini L., De Nardo L., (2014), Design of 2D chitosan scaffolds via electrochemical structuring.Biomatter.  4: 18-24.
20.    Chen M. C., Ling M. H., Kusuma S. J., (2015), Poly-gamma-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta Biomater.  24: 106-116.
21.    Dizaj S. M., Jafari S., Khosroushahi A. Y., (2014), A sight on the current nanoparticle-based gene delivery vectors. Nanoscale. Res. Lett.  9: 1-9.
22.    Stedman  T. L., (1949), Stedman's medical dictionary. , 28th Edition
23.    Fitts  P. M., (1958), Engineering psychology. Annual Review of Psychology.  9: 267-294.
24.    Arin S., (2015), Health dictionary.
25.    Sebe I., Petzke M., Zelkó R., Szabó B., (2012), Preparation and possibilities for pharmaceutical use of nano-and microfiber systems. Acta Pharmaceutica Hungarica.  83: 96-104.
26.    Papapostolou D., Howorka S., (2009), Engineering and exploiting protein assemblies in synthetic biology. Molec. Biosys.  5: 723-732.
27.    NCBI.  Nanoparticle. 2007; Available from:
28.    Ahmad Z., Stride E., Edirisinghe M., (2009), Novel preparation of transdermal drug-delivery patches and functional wound healing materials. J. Drug Target.  17: 724-729.
29.    Ali M. Y., Chuang C. Y., Saif M. T., (2014), Reprogramming cellular phenotype by soft collagen gels. Soft Matter.  10: 8829-8837.
30.    Castro C. E., Su H. J., Marras A. E., Zhou L., Johnson J., (2015), Mechanical design of DNA nanostructures. Nanoscale.  7: 5913-5921.
31.    Domachuk P., Tsioris K., Omenetto F. G., Kaplan D. L., (2010), Bio-microfluidics: Biomaterials and biomimetic designs. Adv. Mater.  22: 249-260.
32.    Bediz B., Korkmaz E., Khilwani R., Donahue C., Erdos G., Falo L., Jr D., , Ozdoganlar O. B., (2014), Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm. Res.  31: 117-135.
33.  Gowrishankar T. R., Weaver  J. C., (2006), Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation. Biochem. Biophys. Res. Communicate. 349: 643-653.
34.    Pua E. C., Zhong P., (2009), Ultrasound-mediated drug delivery. IEEE Eng. Medicine Biol. Magaz. 28: 64-75.