Response surface methodology for optimization of Phenol photo-catalytic degradation using Carbon-doped TiO2 nano-photocatalyst

Document Type: Reasearch Paper


Faculty of Advanced Technology, Nano Chemical Engineering Department, Shiraz University, Shiraz, Iran.


In this research, Carbon-doped TiO2 nano-photocatalyst is synthesized via sol-gel technique and photo-catalytic degradation of phenol has been studied under ultraviolet and visible light irradiation in a fluidized bed reactor. Various techniques are used to characterize TiO2 nano-photocatalyst such as X-Ray Diffraction, Fourier transform infrared spectroscopy,  Energy Dispersive Spectroscopy and Field Emission Scanning Electron Microscopy. Based on the results, carbon is introduced into titania structure leading to enhanced response towards visible light. Response surface methodology is used to model the effect of various parameters such as pollutant concentration, pH, irradiation time, photo-catalyst content and Carbon to TiO2 molar ratio. The optimum degradation occurs at pH = 9, catalyst content = 2.5 (g/L), initial phenol concentration = 100 (mg/L), C to TiO2 molar ratio = 2.5 and irradiation time = 180 min. The results show that phenol photo-catalytic degradation kinetics follows Langmuir-Hinshelwood model very closely at optimal conditions. Phenol degradation is 75 % under ultraviolet irradiation during a 180 min period and 70 % under visible irradiation during a 420 min period. Based on the results, C-TiO2 nano-photocatalyst can be a good option for phenol removal under visible light irradiation.


Main Subjects

[1] Anderson J., (2003), The environmental benefits of water recycling and reuse. Water Sci. Tech. Water Supply. 3: 1-10.

[2]Li Z., Shen W., He W., Zu X., (2008), Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photo-catalytic degradation performance on methylene blue. Hazardous Mater. 155: 590-594.

[3]Sakthivel S., Shankar M. V., Palanichamy M., Arabindoo B., Bahnemann D. W., Murugesan V., (2004), Enhancement of photo-catalytic activity by metal deposition: Characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38: 3001-3008.

[4]Devi L. G., Rajashekhar K. E., (2011), A kinetic model based on non-linear regression analysis is proposed for the degradation of phenol under UV/solar light using nitrogen doped TiO2. Molec. Catal. A: Chem. 334: 65-76.

[5] Akbal F., Onar A. N., (2003), Photo-catalytic degradation of phenol. Environ. Monitor. Asses. 83: 295-302.

[6] Iqbal M, (2016), Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere. 144: 785-802.

[7] Ksibi M., Zemzemi A., Boukchina R., (2003), Photo-catalytic degradability of substituted phenols over UV irradiated TiO2. Photochem. Photobiol. A: Chem. 159: 61-70.

[8] Wang K. H., Hsieh Y. H., Chou M. Y., Chang C. Y., (1999), Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl. Catal. B: Environ. 21: 1-8.

[9] Brasquet C., Le Cloirec P., (1997), Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon. 35: 1307-1313.

[10] Huang C. P., Dong C., Tang Z., (1993), Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Manag. 13: 361-377.

[11] Lawrence A. W., McCarty P. L., (1970), Unified basis for biological treatment design and operation. Sanitary Eng. Division. 96: 757-778.

[12] Kurniawan T. A., Chan G. Y., Lo W. H., Babel S., (1006), Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118: 83-98.

[13] Chong M. N., Jin B., Chow C. W., Saint C., (2010), Recent developments in photo-catalytic water treatment technology: A review. Water Res. 44: 2997-3027.

[14] Shanmugapriya S., Premalatha M., Anantharaman N., (2008), Solar photo-catalytic treatment of phenolic wastewater potential, challenges and opportunities. Eng.  Appl. Sci. 3: 36-41.

[15] Rahmani A., Enayati M. A., (2006), Investigation of photo-catalytic degradation of phenol through UV/TiO2 Process. Water Wastewater. 17: 32-37.

[16] Ashar A., Iqbal M., Bhatti I. A., Ahmad M. Z., Qureshi K., Nisar J., Bukhari I. H., (2016), Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: Nonylphenol ethoxylate degradation under UV and solar irradiation. J. Alloys and Comp. 678: 126-136.

[17] Byrne J. A., Fernandez-Ibanez P. A., Dunlop P. S., Alrousan D., Hamilton J. W., (2011), Photocatalytic enhancement for solar disinfection of water: A review. Int. J. Photoenergy. 2011, Article ID 798051, 12 pages.

[18] Zhou M., Yu J., Cheng B., (2006), Effects of Fe-doping on the photo-catalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. Hazard. Mater. 137: 1838-1847.

[19] Yu S., Yun H. J., Kim Y. H., Yi J., (2014), Carbon-doped TiO 2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl. Catal. B: Environmen. 144: 893-899.

[20] Abdullah A. M., Al-Thani N. J., Tawbi K., Al-Kandari H., (2016), Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation. Arab. J. Chem. 9: 229-237.

 [21] Sun Y., Cheng J., (2002), Hydrolysis of lingo-cellulosic materials for ethanol production: A review. Bioresource Technol. 83: 1-11.

[22] Zhu J., Zheng W., He B., Zhang J., Anpo M., (2004), Characterization of Fe-TiO2 photo-catalysts synthesized by hydrothermal method and their photo-catalytic reactivity for photo degradation of XRG dye diluted in water. Molecul. Catal. A: Chem. 216: 35-43.

[23] Andreozzi R., Caprio V., Insola A., Marotta R., (1999), Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today. 53: 51-59.

[24] Rahman I. A., Padavettan V., (2012), Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification and applications in silica-polymer nanocomposites: A review. Nanomaterials. 8: 1-8.

[25] Hench L. L., West J. K., (1990), The sol-gel process. Chem. Rev. 90 (1): 33-72.

[26] Tong T., Zhang J., Tian B., Chen F., He D., (2008), Preparation of Fe3-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photo-catalytic activity for methyl orange degradation. J. Hazard. Mater. 155: 572-579.

[27] Sobana N., Selvam K., Swaminathan M., (2008), Optimization of photo-catalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2. Sep. Purifi. Tech. 62: 648-653.

[28] Xiao Q., Zhang J., Xiao C., Si Z., Tan X., (2008), Solar photo-catalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Solar Energy. 82: 706-713.

[29] Chiou C. H., Juang R. S., (2007), Photo-catalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. J. Hazard. Mater. 149: 1-7.

[30] Venkatachalam N., Palanichamy M., Arabindoo B., Murugesan V., (2007), Enhanced photo-catalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. Molec. Catal. A: Chem. 266: 158-165.

[31] Venkatachalam N., Palanichamy M., Murugesan V., (2007), Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photo-catalytic degradation of 4-chlorophenol. Molec. Catal. A. 273: 177-185.

[32] Sun J., Wang X., Sun J., Sun R., Sun S., Qiao L., (2006), Photo-catalytic degradation and kinetics of Orange G using nano-sized Sn (IV)/TiO2/AC photo-catalys. Molec. Catal. A: Chem. 260: 241-246.

[33] Devi L. G., Rajashekhar K. E., (2011), A kinetic model based on non-linear regression analysis is proposed for the degradation of phenol under UV/solar light using nitrogen doped TiO2. Molec. Catal A: Chem. 334: 65-76.

[34] Yang S., Zhu W., Wang J., Chen Z., (2008), Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Hazard. Mater. 153: 1248-1253.

[35] Lv Y., Yu L., Huang H., Liu H., Feng Y., (2009), Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photo-catalytic properties under the solar light irradiation. Alloys & Comp. 488: 314-319.

[36] Mori K., Maki K., Kawasaki S., Yuan S., Yamashita H., (2008), Hydrothermal synthesis of TiO2 photo-catalysts in the presence of NH4F and their application for degradation of organic compounds. Chem. Eng. Sci. 63: 5066-5070.

[37] Janitabar Darzi S., Mahjoub A. R.,  Bayat A., (2016), Synthesis and characterization of visible light active S-doped TiO2 nano-photocatalyst. Int. J. Nano Dimens. 7: 33-40.

[38] Zakeri S. M. E., Asghari M., Feilizadeh M., Vosoughi M., (2014), A visible light driven doped TiO2 nano-photocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.

[39] Liu H. L., Chiou Y. R., (2005), Optimal de-colorization efficiency of Reactive Red 239 by UV/TiO2 photo-catalytic process coupled with response surface methodology. Chem. Eng. J. 112: 173-179.

[40] Box G. E., Draper N. R., (1987), Empirical model-building and response surfaces (Vol. 424). New York: Wiley.

[41] Xiao Q., Zhang J., Xiao C., Si Z., Tan X., (2008), Solar photo-catalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Solar Energy. 82: 706-713.

[42] Mohammadi M., Sabbaghi S., (2014), Photo-catalytic degradation of 2, 4-DCP wastewater using MWCNT/TiO2 nano-composite activated by UV and solar light. Environ. Nanotech. Monitoring Manag. 1-2: 24-29.

[43] Rasouli F., Aber S., Salari D., Khataee A. R., (2014), Optimized removal of Reactive Navy Blue SP-BR byorgano-montmorillonite based adsorbent through central composite design. Appl. Clay Sci. 87: 228–34.

[44] Pavia D. L., Lampman G. M., Kriz G. S., Vyvyan J. A. (4th Ed.), (2008), Introduction to Spectroscopy, Gengage Learning.

[45] Vinu R., Madras G., (2011), Photo-catalytic degradation of water pollutants using nano-TiO2, In Energy efficiency and renewable energy through nanotechnology. Energy Efficiency and Renewable Energy through Nanotech. Springer. 625-677.

[46] Bubacz K., Choina J., Dolat D., Morawski A. W., (2010), Methylene blue and phenol photo-catalytic degradation on nanoparticles of anatase TiO2. Environm. Studies. 19: 672-685.

[47] Chiou C. H., Wu C. Y., Juang R. S., (2008), Influence of operating parameters on photo-catalytic degradation of phenol in UV/TiO2 process. Chem. Eng. 139: 322-329.

[48] Liou R. M., Chen S. H., Hung M. Y., Hsu C. S., Lai J. Y., (2005), Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere. 59: 117-125.

[49] Hayat K., Gondal M. A., Khaled M. M., Ahmed S., Shemsi A. M., (2011), Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photo-catalytic removal of phenol from water. Appl. Catal A: General. 393: 122-129.

[50] Chong M. N., Jin B., Chow C. W., Saint C., (2010), Recent developments in photo-catalytic water treatment technology: A review. Water Research. 44: 2997-3027.

[51] Barakat M. A., Schaeffer H., Hayes G., Ismat-Shah S., (2005), Photo-catalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl. Catal. B: Environ. 57: 23-30.

[52] Massa P., Ivorra F., Haure P., Fenoglio R., (2011), Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. Hazard. Mater. 190: 1068-1073.

[53] Mohammadi M., Sabbaghi S., Sadeghi H., Zerafat M. M., Pooladi R., (2016), Preparation and characterization of TiO2/ZnO/CuO nanocomposite and application for phenol removal from wastewaters. Desalination & Water Treatment. 57: 799-809.

[54] Iqbal M., Bhatti I. A., (2015), Gamma radiation/H2 O2 treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation. J. Hazard. Mater. 299: 351-360.

[55] Ahamd M. Z., Ehtisham-ul-Haque S., Nisar N., Qureshi K., Ghaffar A., Abbas M., Iqbal, M., (2017), Detoxification of photo-catalytically treated 2-chlorophenol: Optimization through response surface methodology. Water Sci. Technol, wst 2017152.