Structural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations

Document Type: Reasearch Paper

Authors

1 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran.

2 Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran.

3 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.

Abstract

We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles. CO molecule is preferentially adsorbed on the surface of Au atoms with significant adsorption energies. It was found that the CO molecule moves preferentially towards the Au atoms when it was positioned at the top Au sites of the nanoparticle. Here, we have focused on the adsorption of CO on the studied system, and the major point is that the charge is transferred from the CO molecule to the nanoparticle. The results suggest that the oxygen atom has a little mutual interaction with the surface Au atoms. We have summarized the results of density functional theory calculations including adsorption energies, Mulliken charge analysis and electronic density of states. Charge analysis based on Mulliken charges reveals a substantial charge transfer from the CO molecule to the TiO2 supported Au overlayers. With the inclusion of van der Waals (vdW) interactions, the results show an increase in the adsorption energy values. TiO2 supported Au overlayers have strong sensing capability for the detection of CO molecules, indicating the higher adsorption ability of these modified nanostructures. The goal of this study was to report on results that provide new insights, or significantly expand our understanding of the structural and electronic properties of novel TiO2 supported Au overlayers for chemical sensing of CO molecules.

Keywords

Main Subjects


[1] Hoffmann M. R., Martin S. T., Choi W., (1995), Bahnemann D. W., environmental applications of semiconductor photocatalysis. Chemical reviews. 95: 69-96.

[2] Fujishima A., Honda K., (1972), Electrochemical photolysis of water at a semiconductor electrode. Nature. 238: 37-42.

[3] Erdogan R., Ozbek O., Onal I., (2010), A periodic DFT study of water and ammonia adsorption on anatase TiO2 (001) slab. Surf. Sci. 604: 1029–1033.

[4] Hummatov R., Gulseren O., Ozensoy E., Toffoli D., Ustunel H., (2012), First-Principles investigation of NOx and SOx adsorption on anatase supported BaO and Pt overlayers. J. Phys. Chem. C. 116: 6191-6199.

[5] Liu H., Zhao M., Lei Y., Pan C., Xiao W., (2012), Formaldehyde on TiO2 anatase (1 0 1): A DFT study. J. Comput. Mater. Sci. 15: 389-395.

[6] Batzilla M., Morales E. H., Diebold U., (2006), Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys. Rev. letts. 96: 026103.

[7] Bellardita M., Addamo M., Di Paola A., Palmisano L., (2007), Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films. J. Chem. Phys. 339: 94-103.

[8] Zuas O., Budiman H., Hamim N., (2013), Anatase TiO2 and mixed M-Anatase TiO2 (M = CeO2 or ZrO2) nano powder: Synthesis and characterization. Int. J. Nano. Dimens. 4: 7-12.

[9] Otoufi M. K., Shahtahmasebebi N., Kompany A., Goharshadi E., (2014), Systematic growth of Gold nanoseeds on silica for Silica@Gold core-shell nanoparticles and investigation of optical properties. Int. J. Nano. Dimens. 5: 525-531.

[10] Haruta M., Kobayashi T., Sano H., Yamada N., (1987), Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. J. Chem. Lett. 16: 405-411.

[11] Okumura M, Tsubota S, Haruta M, (2003), Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2. J. Mol. Catal. A. Chem.199: 73-84.

[12] Lopez N, Norskov J. K., (2002), Catalytic CO oxidation by a Gold nanoparticle: A density functional study. J. Am. Chem. Soc. 124: 11262-11263.

[13] Chen M. S., Goodman D. W., (2006), Structure–activity relationships in supported Au catalysts. Catal. Today. 111: 22-33.

[14] Kung H. H., Kung M. C., Costello C. K., (2003), Supported Au catalysts for low temperature CO oxidation. J. Catal. 216: 425-432.

[15] Hayashi T. M., Tanaka K., Haruta M., (1998), Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178: 566-575.

[16] Salama T, Ohnishi R, Shido T, Ichikawa M, (1996), Highly selective catalytic reduction of NO by H2 over Au 0 and Au (I) impregnated in NaY zeolite catalysts. J. Catal. 162: 169-178.

[17] Rodriguez J. A., Liu G., Jirsak T., Hrbek J., Chang Z. P., Dvorak J., Maiti A., (2002), Chemistry of NO2 on oxide surfaces: Formation of NO3 on TiO2(110) and NO2O vacancy interactions. J. Am. Chem. Soc. 124: 5242-5248.

[18] Chen M. S., Goodman D. W., (2004), The Structure of catalytically active gold on titania. Science. 306: 252-255.

[19] Cosandey F., Madey T. E., (2001), Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surf. Rev. Lett. 8: 73-79.

[20] Valden M., Lai X., Goodman D. W., (1998), Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 281: 1647-1650.

[21] Sanchez A., Abbet S., Heiz U., Schneider W. D., Hakkinen H., Barnett R. N., Landman U., (1999), Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. J. Phys. Chem. A. 103: 9573-9578.

[22] Molina L. M., Hammer B., (2005), Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl. Catal. A Gen. 291: 21-31.

[23] Liu J., Liu Q., Fang P., Pan C., Xiao W., (2012), First  principles  study  of  the adsorption of a NO molecule on N-doped anatase nanoparticles. J. Appl. Surf. Sci. 258: 8312-8318.

[24] Habibpour R., Kashi E., Vaziri R., (2017), Computational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption. Int. J. Nano. Dimens. 8: 114-123.

[25] Abbasi A., Sardroodi J. J., (2016), A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices. Int. J. Nano Dimens. 7: 349-359.

[26] Klaus, D. Sattler, (2010), Handbook of Nanophysics- Nanoparticles and Quantum Dots – CRC Press. ISBN 9781420075441.

[27] Demiroglu I., Li Z. Y., Piccolo L., Johnston R. L., (2017), A DFT study of molecular adsorption on titania supported Au/Rh nanoalloys. J. Comput. Theo. Chem. 1107: 142-151.

[28] Rastkar Ebrahimzadeh A., Abbasi M., Jahanbin Sardroodi J., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano. Dimens. 6: 11-17.

[29] Hohenberg P., Kohn W., (1964), Inhomogeneous electron gas. J. Phys. Rev. 136: B864-B871.

[30] Kohn W., Sham L., (1965), Self-Consistent equations including exchange and correlation effects. J. Phys. Rev. 140: A1133-A1138.

[31] The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site ‘http://www.openmxsquare.org’.

[32] Ozaki T., (2003), Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B. 67: 155108-155111.

[33] Ozaki T., Kino H., (2004), Numerical atomic basis orbitals from H to Kr. Phys. Rev. B. 69: 195113.

[34] Perdew J. P., Burke K., Ernzerhof M., (1997), Generalized gradient approximation made simple. Phys. Rev. Letts. 78: 1396-1399.

[35] Koklj A., (2003), Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28: 155−168.

[36] Grimme S., (2006), Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27: 1787-1799.

[37] Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.php.

[38] Wyckoff R. W. G., (1963), Crystal structures, Second edition. Interscience Publishers, USA, New York.