Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system

Document Type : Reasearch Paper


1 Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

2 Research Institute of Petroleum Industry (RIPI), P.O.Box: 14665-137, Tehran, Iran.


Multi-walled carbon nanotubes (CNTs) are synthesized with the assistance of water vapor in a horizontal reactor using methane over Co-Mo/MgO catalyst through chemical vapor deposition method. The application of Adaptive Neuro-Fuzzy Inference System (ANFIS) technique for modeling the effect of important parameters (i.e. temperature, reaction time and amount of H2O vapor) on the quality of the CNT process is investigated. Using experimental data, qualities of CNTs are determined for training, testing and validation of developed ANFIS model. From the analysis carried out by the ANFIS-based model, the mean square deviation and a regression coefficient are found to be 4.4% and 99%, respectively. The validation results confirm that the ability of the proposed ANFIS model for predicting the quality of the CNT process over a wide range of operational conditions. In addition, sensitivity analysis indicates that the temperature has the significant effect (i.e. 94%) on the quality of the CNT process.


Main Subjects

[1] Ziabari S. A. S., Saravani M. G. T., (2017), A novel lightly doped drain and source Carbon nanotube field effect transistor (CNTFET) with negative differential resistance. Int. J. Nano Dimens. 8: 107-113.
[2] Monshipouri M., Behrooz M., Abdi Y., (2017), Modified NEGF method for atomistic modeling of field emission from carbon nanotube. Phys. Lett. A. 381: 2959-2964.
[3] Tripathi A. K., Jain V., Saini K., Lahiri I., (2017), Field emission response from multi-walled carbon nanotubes grown on electrochemically engineered copper foil. Mat. Chem. Phys. 187: 39-45.
[4] Kamalian M., Abbasi A., Jalili Y. S., (2016), Electerical and optical properties of a small capped (5, 0) zigzage carbon nanotube by B, N Ge and Sn atoms: DFT theoretical calculation. Int. J. Nano Dimens. 7: 329-335.
[5] Iijima S., (1991), Microtubules of graphitic carbon. Nature. 354: 56-58.
[6] Baird T., Fryer J. R., Grant B., (1974), Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 °C. Carbon. 12: 591-602.
[7] Baker R. T. K., Barber M. A., HarrisP. S., Feates F. S., Waite R. J., (1972), Nucleation and growth of carbon deposits from the Nickel catalyzed decomposition of acetylene. J. Catal. 26: 51-62.
[8] Baker R. T. K., Waite R. J., (1975), Formation of carbonaceous deposit from the platinum-iron catalyzed decomposition of acetylene. J. Catal. 37: 101-105.
[9] Oberlin A., Endo M., Koyama T., (1976), Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth. 32: 335-349.
[10]Raghubanshi H., Dikio E. D., (2015), Synthesis of helical carbon fibers and related materials: A review on the past and recent developments. Nanomaterials.  5: 937-968.
[11] Kumar M., Ando Y., (2010), Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10: 3739-3758.
[12] Thess A., Lee R., Nikolaev P, Dai H. J., Petit P., Robert J., (1996), Crystalline ropes of metallic carbon nanotubes. Science. 273: 483-487.
[13] Berkmans J., Jagannatham M., Rohit D., Haridoss P., (2015), Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diamond and Related Materials. 55: 12-15.
[14] Alijani H., Beyki H. M., Shariatinia Z., Bayat M., Shemirani F., (2014), A new approach for one step synthesis of magnetic carbon nanotubes/diatomite earth composite by chemical vapor deposition method: Application for removal of lead ions. Chem. Eng. J. 253: 456-463.
[15] Lee C. J.,  Park J., Huh Y.,  Lee J. Y., (2001), Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 343: 33-38.
[16] Bandow S., Asaka S., Saito Y., Rao A. M.,  Grigorian L., Richter E. M, Eklund  P. C.,  (1998), Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80: 3779-3782.
[17] Kaatz F. H., Siegal M. P.,  Overmyer D. L.,  Provencio P. P., Tallant D. R., (2006), Thermodynamic model for growth mechanisms of multiwall carbon nanotubes. Appl. Phys. Lett. 89: 241915-241915.
[18] Makris T. D., Giorgi L., Giorgi R., Lisi N., Salernitano E., (2005), CNT growth on alumina supported nickel catalyst by thermal CVD. Diamond Relat. Mater. 14: 815-819.
[19] Bolton K., Ding F., Rosén A. J., (2006), Atomistic simulations of catalyzed carbon nanotube growth. Nanosci. Nanotechnol. 6: 1211-1224.
[20] Hayati M., Rezaei A., Seifi M., (2010), CNT-MOSFET modeling based on artificial neural network: Application to simulation of nanoscale circuits. Solid-State Electron. 54: 52-57.
[21] Amani-Ghadim A. R., Seyed Dorraji M. S., (2015), Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Appl. Catal. B. 163: 539-546.
[22] Soltanali S., Halladj R., Tayyebi Sh., Rashidi A. M., (2014), Neural network and genetic algorithm for modeling and optimization of effective parameters on synthesized ZSM-5 particle size. Mater. Lett. 136: 138-140.
[23] Ruano A. E., (2005), Intelligent control systems using computational intelligence techniques. IEE Control Engineering Series, IEE/IET, London, 70.
[24] Akkaya E., (20160, ANFIS based prediction model for biomass heating value using proximate analysis components. Fuel. 180: 687-693.
[25] Yang L., Entchev E., (2014), Performance prediction of a hybrid microgeneration system using adaptive neuro-fuzzy inference system (ANFIS) technique. Appl. Energy. 134: 197-203.
[26] Li W. Z., Wen J. G., Ren Z. F., (2002), Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A. 74: 397-402.
[27] Li W. Z., Wen J. G., Ren Z. F., (2001), Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A. 73: 259-264.
[28] Wagner R. S., Ellis W. C., (1964), Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4: 89-90.
[29] Baker R. T. K, (1989), Catalytic growth of carbon filaments. Carbon. 27: 315-323.
[30] Li Sh., Yang B., Qi F., (2016), Accelerate global sensitivity analysis using artificial neural network algorithm: Case studies for combustion kinetic model. Combustion and Flame. 168: 53-64.