Microwave-assisted rapid synthesis of Co3O4 nanorods from CoC2O4.2H2O nanorods and its application in photocatalytic degradation of methylene blue under visible light irradiation

Document Type: Reasearch Paper


Department of Chemistry, Lorestan University, Khoramabad 68151-44316, Iran.


In this work, Co3O4 nanorods were successfully prepared by microwave-assisted solid state decomposition of rod-like CoC2O4.2H2O precursor within a very short reaction time (6 min) without the use of a solvent/surfactant and complicated equipment. The as-obtained Co3O4 nanorods were fully characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–Vis), energy-dispersive X-ray spectroscopy (EDX), and magnetic measurements. TEM and SEM images showed that the Co3O4 nanorods have a length of 1-3 µm and diameter of 40-80 nm. FT-IR, XRD, EDX and selected-area electron diffraction demonstrated that the nanorods are composed of pure cubic phase Co3O4. Magnetic measurements at room temperature suggested the existence of a weak ferromagnetic behavior. The optical spectrum indicated two direct band gaps at 2.20 and 3.60 eV with a blue shift compared with the bulk sample. The photocatalytic activity of Co3O4 nanorods was investigated for the degradation of methylene blue (MB) as a model of dye pollutants in the presence of H2O2 as a green oxidant. The Co3O4 nanorods showed high efficiency for the degradation of MB dye by using H2O2 under visible light irradiation. Trapping experiments indicated that hydroxyl (OH) radicals were the main reactive species for dye degradation in the present photocatalytic system. In addition, the possible photodegradation mechanism was also proposed based on the trapping experiment results.


Main Subjects

[1] Klabunde K. J., Richards R. M., (2012), Nanoscale Materials in Chemistry. 2nd edn. Wiley, New York.

[2] Mate V. R., Shirai M., Rode C. V., (2013), Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catal. Commun. 33: 66–69.

[3] Warang T., Patel N., Santini A., Bazzanella N., Kale A., Miotello, A, (2012), Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Appl. Catal. A: Gen. 423–424: 21– 27.

[4] Casas-Cabanas M., Binotto G., Larcher D., Lecup A., Giordani V., Tarascon, J. M., (2009), Defect chemistry and catalytic activity of nanosized. Co3O4. Chem. Mater. 21: 1939–1947.

[5] Askarinejad A., Bagherzadeh M., Morsali A, (2010), Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl. Surface Sci. 256: 6678–6682.

[6] Lou X. W., Deng D., Lee J. Y., Feng J., Archer L. A., (2008), Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20: 258–262.

[7] Chou S. L., Wang J. Z., Liu H. K., Dou S. X., (2008), Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J. Power. Sources. 182: 359–364.

[8] Li Y. G., Tan B., Wu Y. Y., (2008), Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capacity. Nano Lett. 8: 265–270.

[9] Li W.Y., Xu L. N., Chen J., (2005), Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Func. Mater. 15: 851–857.

[10] Sugimoto T., Matijevic E., (1979), Colloidal cobalt hydrous oxides, preparation and properties of monodispersed. Co3O4. J. Inorg. Nucl. Chem. 41: 165–172.

[11] Makhlouf S. A., (2002), Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 246: 184–190.

[12] Sun L., Li H., Ren L., Hu C., (2009), Synthesis of Co3O4 nanostructures using a solvothermal approach. Solid State Sci. 11: 108–112.

[13] Chen Y., Zhang Y., Fu S., (2007), Synthesis and characterization of Co3O4 hollow spheres. Mater. Lett. 61: 701–705.

[14] Masoomi M. Y., Morsali A., (2012), Applications of metal-organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 256: 2921-2943.

[15] Mohandes F., Davar F., Salavati-Niasari M., (2010), Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co(Pht)(H2O)]n polymers.  J. Magn. Magn. Mater. 322: 872–877.

[16] Kodge A., Kalyane S., Lagashetty A.,(2012),Synthesis, characterization and thermal study of poly (methyl methacrylate)-Co3O4 nanocomposite film. Int. J. Nano Dimens.3: 53-57.

[17] Thangavelu K., Parameswari K., Kuppusamy K., Haldorai Y., (2011), A simple and facile method to synthesize Co3O4 nanoparticles from metal benzoate dihydrazinate complex as a precursor. Mater. Lett. 65: 1482–1484.

[18] Salavati-Niasari M., Khansari A., Davar F., (2009), Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorg. Chim. Acta. 362: 4937–4942.

[19] Farhadi S., Pourzare K., (2012), Simple and low-temperature preparation of Co3O4 sphere-like nanoparticles via solid-state thermolysis of the [Co(NH3)6](NO3)3 complex. Mater. Res. Bull. 47: 1550–1556.

[20] Farhadi S., K. Pourzare, (2014), Synthesis and characterization of Co3O4 nanoplates by simple thermolysis of the [Co(NH3)6]2(C2O4)3·4H2O complex.Polyhedron. 67: 104–110.

[21] Farhadi S., Nadri Gh., Javanmard M., (2016), [Co(NH3)5(NO3)](NO3)2 as an energetic coordination precursor for the preparation of Co3O4 nanoparticles at low temperature. Int. J. Nano Dimens. 7: 201-207.

[22] Li L., Chu Y., Liu Y., Song J. L., Wang D., Du X. W., (2008), A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 62: 1507–1510.

[23] Du J., Chai L., Wang G., Li K., Qian Y., (2008),Controlled synthesis of one-dimensional single-crystal Co3O4 nanowires.  Aust.  J. Chem. 61: 153–158.

[24] Wang R. M., Liu C. M., Zhang H. Z., Chen C. P., Guo L., Xu H. B., Yang S. H., (2004), Porous nanotubes of Co3O4: Synthesis, characterization and magnetic properties. Appl. Phys. Lett. 85: 2080–2082.

[25] Li Y., Zhao J., Dan Y., Ma D., Zhao Y., Hou S., Lin H., Wang Z., (2011), Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem. Eng. J. 166: 428–434.

[26] Sun H., Ahmad M., Zhu J., (2013), Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithium-ion battery electrode. Electrochim. Acta. 89: 199-205.

[27] Ren M., Yuan S., Su L., Zhou Z., (2012), Chrysanthemum-like Co3O4 architectures: Hydrothermal synthesis and lithium storage performances. Solid State Sci. 14: 451-455.

[28] Yang L. X., Zhu Y. J., Li L., Zhang L., Tong H., Wang W. W., (2006), A facile hydrothermal route to flower-like cobalt hydroxide and oxide. Eur. J. Inorg. Chem. 23: 4787–4792.

[29] Jiu J., Ge Y., Li X., Nie L., (2002), Preparation of Co3O4 nanoparticles by a polymer combustion route. Mater. Lett. 54: 260–263.

[30] Gu F., Li C., Hu Y., Zhang L., (2007), Synthesis and optical characterization of Co3O4 nanocrystals via a facile combustion method. J. Crys. Growth. 304: 369–373.

[31] Gardey-Merino M. C., Palermo M., Belda R., Fernández de Rapp M. E., Lascalea G. E., Vázquez P. G., (2012 ), Combustion synthesis of Co3O4 nanoparticles: fuel ratio effect on the physical properties of the resulting powders. Proced. Mater. Sci. 1: 588-593.

[32] Ma J., Zhang S., Liu W., Zhao Y., (2010), Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder. J. Alloys Compd. 490: 647–651.

[33] Lester E., Aksomaityte G., Li J., Gomez S., Gonzalez-Gonzalez J., Poliakoff, M., (2012), Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog. Cryst. Growth Charact. Mater. 58: 3–13.

[34] Baydi M. E., Poillerat G., Rehspringer J. L., Gautier J. L., Koenig J. F., Chartier P., (1994), A sol–gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J. Solid State Chem. 109: 281–288.

[35] Kim D. Y., Ju S. H., Koo H. Y., Hong S. K., Kangf Y. C., (2006), Synthesis of nanosized Co3O4 particles by spray pyrolysis. J. Alloys Compd. 417: 254–258.

[36] Kumar R. V., Diamant Y., Gedanken A., (2000), Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12: 2301–2305.

[37] Wang X., Chen X. Y., Gao L. S., Zheng H. G., Zhang Z., Qian, Y. T., (2004), One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization and optical and electrochemical properties. J. Phys. Chem. B. 108: 16401–16404.

[38] Fan S., Liu X., Li Y., Yan E., Wang C., Liu J., Zhang Y., (2013), Non-aqueous synthesis of crystalline Co3O4 nanoparticles for lithium-ion batteries. Mater. Lett. 91: 291–293.

[39] Jiang J., Li L., (2007), Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 61: 4894–4896.

[40] Zou D., Xu C, Luo H., Wang L., Ying T., (2008),  Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett. 62: 1976–1978.

[41.] Zhou K., Liu J., Wen P., Hu Y., Gui Z., (2015), Morphology-controlled synthesis of Co3O4 by one step template-free hydrothermal method.Mater. Res. Bull.67: 87–93.

[42]  Zhu Y. J., Chen F., (2014), Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 114: 6462–6555.

[43] Kitchen H. J., Vallance S. R.,  Kennedy J. L., Tapia-Ruiz N., Carassiti L., Harrison A.,  Whittaker A. G., Drysdale T. D., Kingman S. W., Gregory D. H., (2014),Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing. Chem. Rev. 114: 1170–1206.

[44] Assi N., Sharif A. M., Naeini, Q. M., (2014), Synthesis, characterization and investigation photocatalytic degradation of Nitro Phenol with nano ZnO and ZrO2Int. J. Nano Dimens. 5: 387-391.

[45] Assi N., Sharif A. M., Bakhtiari H., Naeini Q. M., (2014), Photocatalytic property of ZnO and Mn-ZnO nanoparticles in removal of Cibacet Turquoise blue G from aquatic solution. Int. J.  Nano Dimens. 5: 145-154.

[46] Majedi  A., Davar F., Abbasi A. R., (2016), Metal-organic framework materials as nano photocatalyst. Int. J. Nano Dimens. 6: 1-14.

[47] Khodadadeh F., Aberoomand-Azar P., Tehrani M. S., Assi N., (2016), Photocatalytic degradation of, 2, 4, 6-Trichlorophenol with CdS nanoparticles synthesized by a microwave-assisted sol-gel method. Int. J. Nano Dimens. 7: 263-269.

[48] Nakata K., Fujishima A., (2012),  TiO2 photocatalysis: Design and applications.J. Photochem. Photobiol. C: Photochem. Rev. 13: 169-189.

[49] Janitabar Darzi S., Mahjoub A. R., Bayat A., (2016), Synthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst. Int. J. Nano Dimens. 7: 33-40.

[50] Abbasi A., Jahanbin-Sardroodi J., (2016), A theoretical study on the adsorption behaviors of ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices. Int. J. Nano Dimens. 7: 349-359.

[51] Rastkar -Ebrahimzadeh A., Abbasi M., Jahanbin Sardroodi J., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano Dimens. 6: 11-17.

[52] Zakeri S. M. E., Asghari M., Feilizadeh M. Vosoughi M., (2014), A visible light driven doped TiOnanophotocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.

[53] Khojasteh, H., Salavati-Niasari, M., Mazhari, M.-P., Hamadanian, M., (2016), Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation. RSC Adv. 6: 78043-78052.

[54] Safajou H., Khojasteh H., Salavati-Niasari M., Mortazavi-Derazkola S., (2017), Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. J. Coll. Interf. Sci. 498: 423-432.

[55] Aghabeygi Sh., Zare-Dehnavi M., (2015), Sonosynthesis and characterization of ZrO2/ZnO nanocomposite, composition effect on enhancing of photocatalytic properties. Int. J. Nano Dimens. 6: 297-304.

[56] Hoseini L., Bagheri-Ghomi A., (2016), Photocatalytic degradaton of Sulfathiazole using nanosized CdO in aqueous solution. Int. J. Nano Dimens. 8:  159-163.

[57] Azar-Bagheri Gh., Ashayeri V., Mahanpoor K., (2013),  Photocatalytic efficiency of CuFe2O4 for photodegradation of acid red 206. Int. J. Nano Dimens. 4: 111-115.

[58] Assi N., Aberoomand-Azar P., Tehrani M. S., Husain S. W.,  Darwish M., Pourmand S., (2017), Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23). Int. J. Nano Dimens. 8: 241-249.

[59]Wang Y., Zhou L., Duan X., Sun H., Tin E. L., Jin W., Wang S., (2015), Photochemical degradation of phenol solutions on Co3O4 nanorods with sulfate radicals.  Catal.Today. 25: 576-584.

[60] Qiu X. P., Yu J. S., Xu H. M., Chen W. X., Hu W., Chen G. L., (2016), Interfacial effects of the Cu2O nano-dots decorated Co3O4 nanorods array and its photocatalytic activity for cleaving organic molecules. Appl. Surf. Sci. 382: 249-259.

[61] Lai, T.-L., Lai, Y.-L., Lee, C.-C., Shu, Y.-Y., Wang, C.-B., (2008), Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal. Today. 131: 105-110.

[62] Gasparotto A., Barreca D, Bekermann D., Devi A.,  Fischer R. A.,  Fornasiero P., Gombac V.,  Lebedev O. I., Maccato C., Montini T.,  Tendeloo G. V., Tondello E., (2011), F-Doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol. J. Am. Chem. Soc. 133: 19362–19365.

[63] Salavati-Niasari M., Mir N., Davar F., (2009), Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. J. Phys. Chem. Solids. 70: 847–852.

[64] Nakamoto K., (2009), Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic and bioinorganic chemistry, 6th edn. Wiley, New York.

[65] Ai L. H., Jiang J., (2009), Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method. Powder Tech. 195: 11–14.

[66] Bhatt A. S., Bhat D. K., Tai C. W., Santosh M. S., (2011), Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater. Chem. Phys. 125: 347–350.

[67] Klug H. P., Alexander L. E., (1964), X-ray Diffraction Procedures, 2nd edn. Wiley, New York.

[68] Nethravathi C., Sen S., Ravishankar N., Rajamathi M., Pietzonka C., Harbrecht B., (2005), Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt hydroxide. J. Phys. Chem. B. 109: 11468 –11472.

[69] Ichiyanagi Y., Kimishima Y., Yamada S., (2004), Magnetic study on Co3O4 nanoparticles. J. Magn. Magn. Mater. 272–276: e1245–e1246.

[70] Ozkaya T., Baykal A., Toprak M. S., Koseoglu Y, Durmus Z., (2009), Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. J. Magn. Magn. Mater. 321: 2145–2149.

[71] He T., Chen D. R., Jiao X. L., Wang Y. L., Duan Y. Z., (2005),  Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mater. 17: 4023–4030.

[72] Gulino A., Dapporto P., Rossi P., Fragala I., (2003), A novel self-liquid MOCVD precursor for Co3O4 thin films. Chem. Mater. 15: 3748–3752.

[73] Yu K., Yang S., Liu C., Chen H., Li H., Sun C., Boyd S. A., (2012), TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ. Sci.Technol. 46: 7318–7326.

[74] Zhang H., Lv X., Li Y., Wang Y., Li J., (2010), P25-Graphene composite as a high performance photocatalyst. ACS Nano. 4: 380–386.