Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles

Document Type : Reasearch Paper


1 Department of Engineering Chemistry, SRKR Engineering College, Chinna Amiram, India-534204.

2 Organic Research Lab, Department of Organic Chemistry, Andhra University, Visakhapatnam, India-530003.

3 Department of Physics, Swarnandhra College of Engineering and Technology, Narsapur, A.P., India –534 280.


Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles were studied. The effect of size on the properties, by capping silver (Ag) and gold (Au) nanoparticles by thiosemicarbazide (TSC) was investigated. The nanoparticles were synthesized by chemical reduction method. The structural formation, surface morphology, phase stability and crystalline nature were characterized by UV-Vis spectroscopy, Fourier transform Infra Red (FT-IR) spectroscopy, Differential Scanning Calorimeter (DSC), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Powder X-ray Diffraction (PXRD). Room temperature dielectric and Impedance spectroscopy were performed to understand the electrical transport behavior and the results indicated that TSC capped Ag nanoparticles have demonstrated better electrical properties. Also, antibacterial studies were performed on human pathogenic bacteria by agar well diffusion method which attested TSC capped Ag nanoparticles have better antibacterial properties.


Main Subjects

[1] Zhang Y., Huang R., Zhu X., Wang L.,  Wu C., (2012), Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Chin. Sci. Bull. 57: 238–246. 
[2] Alshehri A. H., Jakubowska M., Młożniak A., Horaczek M., Rudk D., Free C., Carey J. D., (2012), Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl. Mater. Interfac. 4: 7007–7010.
[3] Saxena U., Goswami P., (2012), Electrical and optical properties of gold nanoparticles: applications in gold nanoparticles-cholesterol oxidase integrated systems for cholesterol sensing. J. Nanopart.  Res. 14: 813-818. 
[4] Elghanian R., Storhoff J. J., Mucic R. C., Letsinger R. L., Mirkin C. A., (1997), Selective colorometric detection of polynucleotides based on the distance dependent optical properties of gold nanoparticles. Science.  277: 1078-1081.
[5] Kuila B. K., Garai A., Nandi A. K., (2007), Synthesis, optical, and electrical characterization of organically soluble silver nanoparticles and their poly (3-hexylthiophene) nanocomposites: Enhanced luminescence property in the nanocomposite thin films. ACS Chem. Mater. 19: 5443-5452.
[6] Xu S., Hartvickson S., Zhao J. X., (2008), Engineering of SiO2-Au-SiO2 sandwich nanoaggregates using a building block: Single, double and triple cores for enhancement of near infrared fluorescence. Langmuir. 24: 7492-7496.
[7] Huang X., Mostaf A., El-Sayed S., (2010), Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1: 13–28.
[8] Rentería-Tapia V., Velásquez-Ordoñez C., Ojeda Martínez M., Barrera-Calva E., González-García F., (2014), Silver nanoparticles dispersed on silica glass for applications as photothermal selective material.  Energy Procedia.  57: 2241-2248.
[9] Lok C. N., Ho C. M., Chen R., He Y. Q., Yu W. Y., Sun H., Tam P. K., Chiu J. F., Che C. M., (2006), Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome. Res. 5: 916–924.
[10] Mao C. F., Vannice M. A., (1995), Formaldehyde oxidation over Ag catalysts. J. Catal. 154: 230–244.
[11] Marambio-Jones C., Hoek E. M. V., (2010), A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12: 1531–1551.
[12] Wang Y., Wan J., Miron R. J., Zhao Y., Zhang Y., (2016), Antibacterial properties and mechanisms of gold–silver nanocages. Nanoscale. 8: 11143-11152.
[13] Shamaila S., Zafar N., Riaz S., Sharif R., Nazir J., Naseem S., (2016), Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials. 6: 71-78.
[14] Teo W. Z., Pumera M., (2014), Fate of silver nanoparticles in natural waters; integrative use of conventional and electrochemical analytical techniques. RSC Adv. 4: 5006-5011.
[15] Levard C., Hotze E. M., Lowry G. V., Brown G. E., (2012), Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 46: 6900–6914.
[16] Chen S., Gao H., Shen W., Lu C., Yuan Q., (2014), Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensor. Actuat. B: chem. 190: 673–678.
[17] Lee P. C., Meisel D., (1982), Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem-US. 86: 3391–3395.
[18] Samberg M. E., Oldenburg S. J., Monteiro-Riviere N. A., (2010), Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect. 118: 407–413.
[19] AshaRani P. V., Low G. K. M., Hande M. P., Valiyaveettil S., (2009), Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3: 279–290.
[20] Ajitha B., Reddy Y. A. K., Reddy P. S., (2015), Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technol. 269: 110-117.
[21] Vorobyova S. A., Lesnikovich A. I., Sobal N. S., (1999), Preparation of silver nanoparticles by interphase reduction. Colloids Surf. A. 152: 375–379.
[22] Satoh N., Kimura K., (1989), Metal colloids produced by means of Gas evaporation technique V. Colloidal dispersion of Au fine particles to hexane, poor dispersion media for metal sol. Bull. Chem. Soc. Jpn. 62: 1758–1763.
[23] Li Z., Li Y., Qian X. F., Yin J.,  Zhu Z. K., (2005), A simple method for selective immobilization of silver nanoparticles. Appl. Surf. Sci. 250: 109–116.
[24] Bahnemann W. D., (1993), Ultrasmall metal oxide particles: Preparation, photophysical characterization and photocatalytic Properties.  Isr. J. Chem. 33: 115–136.
[25] Hongshui W., Xueliang Q., Jianguo C., Shiyuan D., (2005), Preparation of silver nanoparticles by chemical reduction method. Collo. Surf. A: Phy. Engg. Aspects. 256: 111–115.
[26] Chunfang Li., Dongxiang Li., Gangqiang Wan., Jie Xu., Wanguo H., (2011), Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls. Nanoscale. Res. Lett. 6: 440-448.
[27] Chen W., Cai W., Zhang L., Wang G., (2001), Sonochemical processes and formation of Gold nanoparticles within pores of mesoporous silica. J. Colloid Interf. Sci. 238: 291–295.
[28] Sengupta S., Eavarone D., Capila I., Zhao G. L., Watson N., Kiziltepe T., (2005), Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system.  Nature. 436: 568–572.
[29] Kim K. D., Han D. N., Kim H. T., (2004), Optimization of experimental conditions based on the Taguchi robust design for the formation of nanosized silver nanoparticles by chemical reduction method. Chem. Eng. J. 104: 55–61.
[30] Chiara B., Francesco P., Subhrangsu M., Elena M., Silvia N., Ilaria F., Maurizio Q., Maria V. R., Giovanni P., (2014), Gold nanoparticles stabilized with aromatic thiols: Interaction at the molecule–metal interface and ligand arrangement in the molecular shell investigated by SR-XPS and NEXAFS. J. Phys. Chem. C. 118: 8159–8168.
[31] Xiaoli Z., Jouliana M., El K., Liangti Q., Liming D., Quan L., (2007), A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents. J. Colloid. Interface Sci. 308: 381–384.
[32] Chiara B., Carlo M., Ilaria F., Iole V., Maria V. R., Giuliana A., Chiara M., Federica B., Roberto M., Marco R., Settimio M., Giovanni P., (2012), Silver nanoparticles stabilized with thiols: A close look at the local chemistry and chemical structure. J. Phys. Chem. C. 116: 19571–19578.
[33] Singh A. K., Mahe T., Singh D. P., Srivastava O. N., (2010), Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res. 12: 1667–1675.
[34] Simon R., Diana K., Wolfgang M. Z., Matthias E., (2014), An easy synthesis of autofluorescent alloyed silver–gold nanoparticles. J. Mater. Chem. B. 2: 7887-7895.
[35] Isaeva E. I., Kiryukhina S. N., Gorbunova V. V., (2013), Photochemical synthesis of silver and gold nanoparticles in polyhydric alcohols. Russ. J. Gen. Chem. 83: 619–623.
[36] Galina F. P., Alexsandr S. P., Nadezhda P. K., Svetlana A. K., Artem I. E., Tamara G. E., Tat’yana V. F., Larisa M. S., (2014), Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int. J. Nanomed.  9: 1883–1889.
[37] Csapo E., Patakfalvi R., Hornok V., Toth L. T., Sipos A., Szalai A., Csete M., Dekany I., (2012), Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloid Surf. B. 98: 43–49.
[38] Li H., Cui Z., Han C., (2009), Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sensor Actuat B: Chem.  143: 87–92.
[39] Mackie A., Cartney M., (1996), Practical medical microbiology. Churchill Livingstone Publisher (Elsevier): 14: 141.
[40] Taplin D., Zaias N., Rebell G., Blank H., (1969), Isolation and recognition of dermatophytes on a new medium (DTM).  Arch. Dermatol. 99: 203-209.
[41] Perez C., Pauli M., Bazevque P., (1990), An antibiotic assay by the agar well diffusion method. Acta Biologiae. et Medicine. Experimentalis. 15: 113-115.
[42] Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically; Clinical Laboratory Standards Institute Approved Standard – Ninth Edition. 32: 12-20 (2012).
[43] Pfaller M. A., Castanheira M., Diekema D. J., Messer S. A., Moet G. J., Jones R. N., (2010), Comparison of european committee on antimicrobial susceptibility testing (EUCAST) and E test methods with the CLSI broth microdilution method for echinocandin susceptibility testing of candida species.  J. Clinic. Microbiol. 48: 1592–1599.
[44] Xiaohua H., Mostafa El-Sayed A., (2010), The optical absorption spectra of metal nanoparticles were dominated by surface Plasmon resonances (SPR). J. Adv. Res. 1: 13-28.
[45] Venkata S., K., Susmila A. G., Sucharitha K. V., Sarma P. V. G. K., Sai Gopal D. V. R.,  (2016), Biofabrication and spectral characterization of silver nanoparticles and their cytotoxic studies on human CD34 +ve stem cells, 3 Biotech.  6: 216-222.
[46] Shengtai H., Jiannian Y., Peng J., Dongxia S., Haoxu Z., Sishen X., Shijin P.,  Hongjun G., (2001), Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir. 17: 1571–1575.
[47] Lambert J. B., Shurvell H. F., Lightner D. A., Cooks R. G., (1998), Organic structural spectroscopy. J. Chem. Educ. 75: 1218-1226.
[48] O’Neill D., Bowman M. R., Gregg J. M., (2000), Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 77: 1520-1528.