Fabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties

Document Type: Reasearch Paper

Authors

1 Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran

2 Department of Materials Engineering and Metallurgy, Faculty of Engineering, IAU-Shiraz Branch, Shiraz, Iran

Abstract

In this study, different samples of Niobium and Vanadium co-doped titania  thin films (5-10-15 mol% Nb and 5-10-15 mol% V) were prepared via sol−gel dip coating method, using niobium chloride as niobium precursor, ammonium metavanadate as vanadium precursor, and titanium (IV) butoxide (TBT) as titanium precursor. The effects of doping amount on the structural, optical, and photo-catalytic properties of formed thin films have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis absorption and transmission electron microscopy (TEM). XRD patterns showed a decrease in peak intensities of the anatase crystalline phase by increasing the Nb/V dopant and doping inhibition effect on the grain growth, and revealed that all samples contained only anatase phase (T= 475 ºC). The photo-catalytic activity of the thin film was measured on degradation rate of methylene blue (MB) solution under UV irradiation. Highest photo-catalytic activity of doped TiO2 thin films were measured in the TiO2–5 mol% Nb-15 mol% V sample (TNV4). Small granular crystallites of 10-15 nm 2D diameter were observed in electron microscope micrographs.

Keywords

Main Subjects


[1] Fujishima A., Honda K., (1972), Electrochemical photolysis of water at a semiconductor electrode. Nature. 238: 37-38.

[2] Samuneva B., Kozhukharov V., (1993), Sol-gel processing of titanium-containing thin coatings. J. Mater. Sci. 28: 2353-2360.

[3] Wang C. Y., Liu C. Y., Shen T., (1997), The photocatalytic oxidation of phenylmercaptotetrazole in TiO2 dispersions. J. Photochem. Photobiol. A. Chem. 109: 65-70.

[4] Palmer F. L., Eggins B. R., Coleman H. M., (2002), The effect of operational parameters on the photocatalytic degradation of humic acid. J. Photochem. Photobiol. 148: 137-143.

[5] Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., (1995), Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69-96.

[6] Ohko Y., Fujishima A., Hashimoto K., (1998), Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. J. Phys. Chem. B. 102: 1724-1729.

[7] Herrmann J. M., (1999), Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 53: 115-129.

[8] Lin J., Yu J. C., Lo D., Lam S. K., (1999), Photocatalytic activity of rutile Ti1−x SnxO2 solid solutions. J. Catal. 183: 368-372.

[9] Maruska H. P., Ghosh A. K., (1978), Photocatalytic decomposition of water at semiconductor electrodes. Sol. Energy. 20: 443-458.

[10] Bickley R., Gonzalez-Carreno T., Lees J., Palmisano L., Tille R. J., (1991), A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 92: 178-190.

[11] Yu J., Yu J., Ho W., Jiang Z., (2002), Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J. Chem. 26: 607-613.

[12] Peng Y. H., Huang G. F., Huang W. Q., (2010), Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv. Powder Technol. 23: 8-12.

[13] Barakat M. A., Schaeffer H., Hayes G., Ismat-Shaha S., (2004), Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. App. Catal. B: Environ. 57: 23–30.

[14] Silva A. M. T., Silva C. G., Drazic G., Faria J. L., (2009), Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catal. Today. 144: 13-18.

[15] Rauf M. A., Meetani M. A., Hisaindee S., (2011), An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination. 276: 13–27.

[16] Kocí K., Mateju K., Obalová L., Krejcíková S., Lacny Z. ´, Plachá D., Capek L., Hospodková A., Solcov O., (2010), Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 96: 239-244.

[17] Li Y., Xie C., Peng S., Lu G., Li S., (2008), Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. J. Mol. Catal. A: Chem. 282: 117–123.

[18] Janitabar Darzi S., Mahjoub A. R., Bayat A., (2016), Synthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst.  Int. J. Nano Dimens. 7: 33-40.

[19] Rastkar Ebrahimzadeh A., Abbasi M., Jahanbin Sardroodi J., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano Dimens. 6: 11-17.

[20] Zakeri S. M. E., Asghari M., Feilizadeh M. Vosoughi M., (2014), A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization. Int. J. Nano Dimens. 5: 329-335.

[21] Abbasi A., Jahanbin Sardroodi J., (2016), A theoretical study on the adsorption behaviors of ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices. Int. J. Nano Dimens. 7: 349-359.

[22] Hirano M., Nakahara N., Ota K., Tanaike O., Inagaki N., (2003), Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 170: 39-47.

[23] Kim J., Song K. C., Foncillas S., Pratsinis S., (2001), Dopants for synthesis of stable bimodally porous titania. J. Eur. Ceram. Soc. 21: 2863-2872.

[24] Akhtar M. K., Pratsinis S. E., Mastrangelo S. V. R., (1992), Dopants in vapor-phase synthesis of titania powders. J. Am. Ceram. Soc. 75: 3408–3416.

[25] Karakitsou K. E., Verykios X. E., (1993), Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 97: 1184-1189.

[26] Mu W., Herrmann J. M., Pichat P., (1989), Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 3: 73-84.

[27] Choi W., Termin A., Hoffmann M. R., (1994), The role of metal Ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. Phys. Chem. 98: 13669-13679.

[28] Okada K., Yamamoto N., Kameshima Y., Yasumori A., MacKenzie K., (2001), Effect of SiO2 addition on the anatase-to-rutile phase transition. J. Am. Ceram. Soc. 84: 1591-1596.

[29] Bsiri N., Zrir M. A., Bardaoui A., Bouaїcha M., (2016), Morphological, structural and ellipsometric investigations of Cr doped TiO2 thin films prepared by sol–gel and spin coating. Ceram. Int. 42: 10599-10607.

[30] Iida Y., Ozaki S., (1961), Grain growth and phase transformation of titanium oxide during calcinations. J. Am. Ceram. Soc. 44: 120-127.

[31] Chao H. E., Yun Y. U., Xingfang H. U., Larbot A., (2003), Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Europ. Ceram. Soc. 23: 1457-1464.

[32] Baker R. W., (2004), Membrane technology and application: Wiley Pub, Chichester.

[33] Klug P., Alexander L. E., (1974), X-Ray Diffraction Procedures, Wiley, New York.

[34] Sharma R., Bhatnagar M. C., (1999), Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sens. Actuators B. 56: 215-219.

[35] Lai C. W., Sreekantan S., (2013), Study of WO3 incorporated C-TiO2 nanotubes for efficient visible light driven water splitting performance. J. Alloys Compd. 547: 43–50.

[36] Zhang Z., Shao C., Zhang L., Li X., Liu Y., (2010), Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351: 57–62.

[37] Garadkar K. M., Patil A. A., Hankare P. P., Chate P. A., Sathe D. J., Delekar S. D., (2009), MoS2: Preparation and their characterization. J. Alloys and Comp. 487: 786-789.

[38] Yang Y., Chen X., Feng Y., Yang G.W., (2007), Physical mechanism of blue-shift of UV luminescence of a single pencil-like ZnO nanowire. Nano. Lett. 7: 3879–3883.

[39] Hu L., Yoko T., Kozuka H., Sakka S., (1992), Effects of solvent on properties of sol—gel-derived TiO2 coating films. Thin. Solid. Films. 219: 18–23.

[40] Wang Z., Helmersson U., Käll P. O., (2002), Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films. 405: 50-54.

[41] Yu J. G., Zhou M. H., Cheng B., Zhao X. J., (2006), Preparation, characterization and photocatalytic of in situ N, S-co-doped TiO2 powders. J. Mol. Catal. A. 246: 176-184.

[42] Yu J. C., Yu J. G., Ho W. K., Zhang L. Z., (2001), Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun. 19: 1942-1943.

[43] Yu J. C., Yu J. G., Ho W. K., Zhang L. Z., (2002), Photocatalytic activity of nano-sized TiO2 powders by sol-gel method, using titanium tetraisopropoxide and EtOH/ H2O Solution. J. Photochem. Photobiol. A. 148: 263-271.

[44] Miyauchi M., Nakajima A., Hashimoto K., Watanabe T., (2000), A highly hydrophilic thin film under 1 μW/cm2 UV Illumination. Adv. Mater. 12: 1923-1927.