Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine (Acid Yellow 23)

Document Type : Reasearch Paper


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Drug and Food Control, Faculty of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran

3 Department of Chemistry, Amirkabir University of Technology (AUT), Tehran, Iran


ZnO- nanoparticles with an average particle size of 24 nm were successfully synthesized using the microwave assisted sol- gel technique. Structural and morphological properties of the nanoparticles were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy disperse spectrum (EDS) and Fourier transform infrared spectroscopy (FTIR). The band gap energy was measured to be 3.27 eV. The photocatalytic degradation of tartrazine has been studied in aqueous solution under UV-C irradiation at different pH values, catalyst doses, and tartrazine concentration. Degradation of samples was monitored by a spectrophotometer. Results have shown that 95% of 50 mg L-1 tartrazine was degraded in 120 min due to the photocatalytic degradation in presence of 0.02 g of ZnO-nanoparticles. The photocatalytic degradation kinetics has also been investigated. The experimental data were fitted very well in the pseudo-first-order kinetic and Langmuir-Hinshelwood models.


Main Subjects

[1] Hess E. V., (2002), Environmental chemicals and autoimmune disease: Cause and effect. Toxicolo. 181: 65-70.
[2] Behnajady M., Modirshahla N., Hamzavi R., (2006), Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 133: 226-232.
[3] O’Connor O. A., Young, L., (1989), Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions. Environ. Toxicol. Chem. 8: 853-862.
[4] Dieckmann M. S., Gray K. A., (1996), A comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO2 slurries. Water Res. 30: 1169-1183.
[5] Oturan M. A., Peiroten J., Chartrin P., Acher A. J., (2000), Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ. Sci. Technol. 34: 3474-3479.
[6] Bo L., Zhang Y., Quan X., Zhao B., (2008), Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst. J. Hazard. Mater. 153: 1201-1206.
[7] Modirshahla N., Behnajady M., Mohammadi-Aghdam S., (2008), Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. J. Hazard. Mater. 154: 778-786.
[8] Canizares P., Saez C., Lobato J., Rodrigo, M., (2004), Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes. Ind. Eng. Chem. Res. 43: 1944-1951.
[9] Chang Y.-C., Chen D.-H., (2009), Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 165: 664-669.
[10] Chen C.-C., Fan H.-J., Jan J.-L., (2008), Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with ZnO nanopowder. J. Phys. Chem. 112: 11962-11972.
[11] Bhatkhande D. S., Kamble S. P., Sawant S. B., Pangarkar V. G., (2004), Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chem. Eng. J. 102: 283-290.
[12] Sadeghi B., (2014), Preparation of ZnO/Ag nanocomposite and coating on polymers for anti-infection biomaterial application. Spectrochim Acta A Mol Biomol Spectrosc. 118: 787-792.
[13] Ghane M., Sadeghi B., Jafari A., Paknejhad A., (2010), Synthesis and characterizatio+n of a Bi-Oxide nanoparticle ZnO/CuO by thermal decomposition of oxalate precursor method. Int. J. Nano Dimens. 1: 33-40.
[14] Assi N., Sharif A. M., Naeini, Q. M., (2014), Synthesis, characterization and investigation photocatalytic degradation of Nitro Phenol with nano ZnO and ZrO2. Int. J. Nano Dimens. 5: 387-391.
[15] Assi N., Sharif A. M., Bakhtiari H., Naeini Q. M., (2014), Photo catalytic property of ZnO and Mn-ZnO nanoparticles in removal of Cibacet Turquoise blue G from aquatic solution. Int. J.  Nano Dimens. 5: 145-154.
[16] Chu S.-Y., Yan T.-M., Chen S.-L., (2000), Characteristics of sol-gel synthesis of ZnO-based powders. J. Mater. Sci. Lett. 19: 349-352.
[17] Assi N., Mohammadi A., Sadr Manuchehri Q., Walker R. B., (2014), Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho-nitrophenol. Desalination and Water Treatment. 52: 1-10.
[18] Gholipur R., Bahari A., Ebrahimzadeh M., (2017), Deposition of nanostructurated ZrxLa1−xOd thin films on P-type Si (100) substrate by the sol-gel route. Silicon. 9: 173- 181.
[19] Ebrahimzadeh M ., Bahari A., (2016), Structural and Electrical Properties of ZrxY1xOy nanocomposites for gate dielectric applications. J. Electron. Mater. 45: 235-244.
[20] Damonte L., Zélis L. M., Soucase B. M., Fenollosa M. H., (2004), Nanoparticles of ZnO obtained by mechanical milling. Powder Technol. 148: 15-19.
[21] Kahn M. L., Monge M., Collière V., Senocq F., Maisonnat A., Chaudret B., (2005), Size‐and shape‐control of crystalline Zinc Oxide nanoparticles: A new organometallic synthetic method. Adv. Funct. Mater. 15: 458-468.
[22] Komarneni S., Bruno M., Mariani E., (2000), Synthesis of ZnO with and without microwaves. Mater. Res. Bull. 35: 1843-1847.
[23] Hong R., Li J., Chen L., Liu D., Li H., Zheng Y., Ding, J., (2009), Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 189: 426-432.
[24] Tani T., Mädler L., Pratsinis S. E., (2002), Homogeneous ZnO nanoparticles by flame spray pyrolysis. J. Nanopart. Res. 4: 337-343.
[25] Dai Z. R., Pan Z. W., Wang Z. L., (2003), Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13: 9-24.
[26] Ao W., Li J., Yang H., Zeng X., Ma X., (2006), Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technol. 168: 148-151.
[27] Abdollahi Y., Abdullah A. H., Zainal Z., Yusof N. A., (2011), Photocatalytic degradation of p-Cresol by zinc oxide under UV irradiation. Int. J. Mol. Sci. 13: 302-315.
[28] Nageswara Rao A., Sivasankar B., Sadasivam V., (2009), Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst. J. Hazard. Mater. 166: 1357-1361.
[29] Monshi A., Foroughi M. R., Monshi M. R., (2012), Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2: 154-160.
[30] Dos Santos T. C., Zocolo G. J., Morales D. A., De Aragão Umbuzeiro G., Zanoni M. V. B., (2014), Assessment of the breakdown products of solar/UV induced photolytic degradation of food dye tartrazine. Food Chem. Toxicol. 68: 307-315.
[31] Hong R., Zhang S., Di G., Li H., Zheng Y., Ding J., Wei D., (2008), Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater. Res. Bull. 43: 2457-2468.
[32] Elmolla E. S., Chaudhuri M., (2010), Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. J. Hazard. Mater. 173: 445-449.
[33] Konstantinou I. K., Albanis T. A., (2004), TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B. 49: 1-14.
[34] Assi N., Aberoomand Azar P., Saber Tehrani M., Waqif Husain S., (2016), Studies on photocatalytic performance and photodegradation kinetics of zinc oxide nanoparticles prepared by microwave assisted sol–gel technique using ethylene glycol. J. Iran. Chem. Soc. 13:1593–1602
[35] Chakrabarti S., Dutta B. K., (2004), Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112: 269-278.
[36] Docters T., Chovelon J. M., Herrmann J. M., Deloume J. P., (2004), Syntheses of TiO2 photocatalysts by the molten salts method: Application to the photocatalytic degradation of Prosulfuron. Appl. Catal. B. 50: 219-226.
[37] Chakrabarti S., Chaudhuri B., Bhattacharjee S., Ray A. K., Dutta B. K., (2009), Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem. Eng. J. 153: 86-93.
[38] Darwish M.,  Mohammadi A., Assi N., (2016),  Microwave-assisted polyol synthesis and characterization of pvp-capped CdS nanoparticles for the photocatalytic degradation of tartrazine. Mater. Res. Bull. 74: 387–396.
[39] Zhao H., Xu S., Zhong J., Bao X., (2004), Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems. Catal. Today. 93: 857-861.
[40] Bekbölet M., Balcioglu I., (1996), Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion. Water Sci. Technol. 34: 73-80.
[41] Gonçalves M. S. T., Pinto E. M., Nkeonye P., Oliveira-Campos A. M., (2005), Degradation of CI reactive orange 4 and its simulated dyebath wastewater by heterogeneous photocatalysis. Dyes Pigm. 64: 135-139.
[42] Sobana N., Swaminathan M., (2007), The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 56: 101-107.
[43] Saravanan R., Gupta V. K., Narayanan V., Stephen A., (2013), Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq. 181: 133-141.
[44] Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., (1995), Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69-96.
[45] Dharma J., Pisal A., Shelton C., (2009), Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NMR spectrometer. Applicat. Note Shelton. CT: PerkinElmer.