Modification of Silica surface by Titanium sol synthesis and characterization

Document Type: Reasearch Paper


1 Chemical Engineering Department, University Technology PETRONAS, Tronoh, Perak, Malaysia

2 Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar

3 Government College of Engineering and Ceramic Technology, Kolkata, India


Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed Type (V) isotherm indicating the meso-porous nature of the synthesized pure silica. However, STNPs followed type (II) isotherms representing the presence of the large pores. The presence of titanium reduced the surface area of silica nanoparticles with an increase in pore volume and size. Amorphous nature of the synthesized STNPs was observed using X-ray diffraction (XRD). The synthesized pure silica and STNPs exhibited considerable thermal stability up to 800 ° C. The thermo-gravimetric analysis along with the hydrophobicity test confirmed the hydrophobic nature of synthesized silica titanium nanoparticles.


Main Subjects

[1]   Bao B., Li F., Li H., Chen L., Ye C., Zhou J., Wang J., Song Y., Jiang L., (2013), pH-responsive dual fluorescent core-shell microspheres fabricated via a one-step emulsion polymerization. J. Mater. Chem. C.  1: 3802-3807.

[2]   Li M., Lam J. W. Y., Mahtab F., Chen S., Zhang W., Hong Y., Xiong J., Zheng Q., Tang B. Z., ( 2013), Biotin-decorated fluorescent silica nanoparticles with aggregation-induced emission characteristics: fabrication, cytotoxicity and biological applications. J. Mater. Chem. B. 1: 676-684.

[3]    Wang L., Tomura S., Ohashi F., Maeda M., Suzuki M., Inukai K., (2001), Synthesis of single silica nanotubes in the presence of citric acid. J. Mater. Chem. 11: 1465-1468.

[4]   Muller D. A., Sorsch T., Moccio S., Baumann F. H., Evans-Lutterodt K., Timp G., (1999), The electronic structure at the atomic scale of ultrathin gate oxides. Nature. 399: 758-761.

[5]   Monnier A., Schüth F., Huo Q., Kumar D., Margolese D., Maxwell R. S., Stucky G. D., Krishnamurty M., Petroff P., Firouzi A., Janicke M., Chmelka B. F., (1993), Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science. 261: 1299-1303.

[6]   Barandeh F., Nguyen P.-L., Kumar R., Iacobucci G. J., Kuznicki M. L., Kosterman A., Bergey E. J., Prasad P. N., Gunawardena S., (2012), Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS ONE. 7: 1-15.

[7]   Hwang T., Lee H. Y., Kim H., Kim G. T., (2010), Two layered silica protective film made by a spray-and-dip coating method on 304 stainless steel. J. Sol-Gel Sci. Technol. 2010: 1-6.

[8]   Oh Y. K., Hong L. Y., Asthana Y., Kim D. P., (2006), Synthesis of super-hydrophilic mesoporous silica via a sulfonation route. JIEC. 12: 911-917.

[9]   Maggini L., Cabrera I., Ruiz-Carretero A., Prasetyanto E. A., Robinet E., Cola L. De, (2016), Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 8: 7240-7247.

[10] Giesche H., (1994), Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. J. Eur. Ceram. Soc. 14: 189-204.

[11] Yang S., Sun C., Li X., Gong Z., Quan X., (2010), Enhanced photocatalytic activity for titanium dioxide by co-modifying with silica and fluorine. J. Hazard. Mater. 175: 258-266.

[12] Wang N., Zhou L., Guo J., Ye Q., Lin J.-M., Yuan J., (2014), Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin. Appl. Surf. Sci. 305: 267-273.

[13] Liu J., Ma S., Zang L., (2013), Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Appl. Surf. Sci. 265: 393-398.

[14] Vakili D., Attarnejad M. A., Massoodian S. K., Akbarnejad M. M., (2005), Synthesis of hydrophobic silicalite adsorbent from domestic resources: The effect of alkalinity on the crystal size and morphology. IJCCE. 24: 9-14.

[15] Flikkema E., Bromley S. T., (2003), A new interatomic potential for nanoscale silica. Chem. Phys. Lett. 378: 622-629.

[16] Lin Y. S., (2001), Microporous and dense inorganic membrane :current status and prospective. Sep. Purif. Technol. 25: 39-55.

[17] Zou H. W., Shen S., (2008), Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem.  Rev. 108: 3893-3957.

[18] Hench L. L. W., (1990), The sol-gel process. Chem. Rev. 90: 33-72.

[19] Brinker C. J., (1988), Hydrolysis and condensation of silicates: Effects on structure. J.  Non-Cryst. Solids. 100: 31-50.

[20] Xu S., Hartvickson S., Zhao J., (2011), Increasing surface area of silica nanoparticles with a rough surface. ACS Applied Materials & Interfaces. 3: 1865-1872.

[21] Liu S., Han M. Y., (2010), Silica-coated metal nanoparticles. Chem. Asian. J. 5: 36-45.

[22] Bagwe R. P., Hilliard L. R., Tan W., (2006), Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir. 22: 4357-4362.

[23] Jesionowski T., Krysztafkiewicz A., (1999), Properties of highly dispersed silicas precipitated in an organic medium. J. Dispersion Sci. Technol. 20: 1609-1623.

[24] An D., Wang Z., Zhao X., Liu Y., Guo Y., Ren S., (2010), A new route to synthesis of surface hydrophobic silica with long-chain alcohols in water phase. Colloids Surf. A: Physicochemical and Engineering Aspects. 369: 218-222.

[25] Dékány I., Szántó F., Nagy L. G., (1985), Sorption and immersional wetting on clay minerals having modified surface. I. Surface properties of nonswelling clay mineral organocomplexes. J. Colloid Interface Sci. 103: 321-331.

[26] Vrancken K. C., Possemiers K., Van Der Voort P., Vansant E. F., (1995), Surface modification of silica gels with aminoorganosilanes. Colloids Surf. A: Physicochemical and Engineering Aspects. 98: 235-241.

[27] Daniels M. W., Francis L. F., (1998), Silane adsorption behavior, microstructure, and properties of glycidoxypropyltrimethoxysilane-modified colloidal silica coatings. J. Colloid Interface Sci. 205: 191-200.

[28] Hüsing N., Launay B., Doshi D., Kickelbick G., (2002), Mesostructured silica−titania mixed oxide thin films. Chem. Mater. 14: 2429-2432.

[29] López T. M., Avnir D., Aegerter M. A., (2003), Emerging fields in sol-gel science and technology: Springer Netherlands.

[30] Tayade R. J., Kulkarni R. G., Jasra R. V., (2006), Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45: 5231-5238.

[31] Abd Ellateif T. M., Maitra S., (2017), Some studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles. Int. J. Nano Dimens. 8: 97-106.

[32] Park O. K., Kang Y. S., (2005), Preparation and characterization of silica-coated TiO2 nanoparticle. Colloids Surf. A: Physicochemical and Engineering Aspects. 257: 261-265.

[33] Rao A. V., Wagh P. B., (1998), Preparation and characterization of hydrophobic silica aerogels. Mater. chem. phys. 53: 13-18.

[34] Wagh P. B., Rao A. V., Haranath D., (1998), Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels. Mater. chem. phys. 53: 41-47.

[35] Reynolds J., Coronado G., Hrubesh L. W. P. R., (2001), Hydrophobic aerogels for oil-spill clean up-synthesis and characterization. J. Non-Cryst. Solids. 292: 127-137.

[36] Lee M., Lee G., Park S., Ju C., Lim K., Hong S., (2005), Synthesis of TiO2/SiO2 nanoparticles in a water-in-carbon-dioxide microemulsion and their photocatalytic activity. Res. Chem. Intermed. 31: 379-389.

[37] Chiang C. L., Chang R. C., Chiu Y. C., (2007), Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol-gel method. Thermochim. Acta. 453: 97-104.

[38] Ying-Ling Liu W., Hsu K-Y., Ho W-H., (2004), Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim. Acta. 412: 139–147.

[39] Fan X., Lin L., and Messersmith P. B., (2006), Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer-matrix nanocomposites. Compos. Sci. Technol. 66: 1198-1204.

[40] Zawrah M., El-Kheshen F., Abd-Elaal A., (2009), Facile and economic synthesis of silica nanoparticles. J. Ovonic Res. 5: 129-133.