Voltammetric determination of amitriptyline based on graphite screen printed electrode modified with a Copper Oxide nanoparticles

Document Type: Reasearch Paper

Authors

1 Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran

3 Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

Abstract

A novel electrochemical sensor was proposed for the determination of amitriptyline based on the copper oxide (CuO) nanoparticles modified graphite screen-printed electrode. CuO nanoparticles were used to enhance the surface area of the electrode and then improve the sensitivity of the electrochemical sensor. Amitriptyline electrochemical response characteristics of the modified electrode in a phosphate buffer solution (PBS) of pH 7.0 were investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The linear range for the detection of amitriptyline was changed from 1.0 µM to 200.0 μM with the detection limit of 0.4 μM (S/N=3). Finally, the proposed method was applied to measure amitriptyline in real samples. It was shown that the proposed sensor exhibited significant promise as a reliable technique for the detection of amitriptyline in real samples.

Keywords

Main Subjects


[1] Leucht C., Huhn M., Leucht S., (2012), Amitriptyline versus placebo for major depressive disorder. Cochrane. Database. Syst. Rev. 12: CD009138.

[2] Furlanetto S., Orlandini S., Pasquini B., Del-Bubba M., Pinzauti S., (2013), Quality by design approach in the development of a solvent-modified micellar electrokinetic chromatography method: Finding the design space for the determination of amitriptyline and its impurities. Anal. Chim. Acta. 802: 113-124.

[3] Marco J. P., Borges K. B., Tarley C. R. T., Ribeiro E. S., Pereira A. C., (2013), Development and application of an electrochemical biosensor based on carbon paste and silica modified with niobium oxide, alumina and DNA (SiO2/Al2O3/Nb2O5/DNA) for amitriptyline determination. J. Electroanal. Chem. 704: 159-168.

[4] Sanna M. D., Ghelardini C., Galeotti N., (2017), Effect of amitriptyline treatment on neurofilament-H protein in an experimental model of depression. Brain. Res. Bull. 128: 1-6.

[5] Farag R. S., Darwish M. Z., Fathy W. M., Hammad H. A., (2014), New HPLC method to detect amitriptyline in the blood of rats on combination treatment. Int. J. Chem. Anal. Sci. 4: 120-124.

[6] Joanna Karpinska J., Szostak J., (2005), Determination of chlorprothixene and amitryptyline hydrochlorides by UV-derivative spectrophotometry and UV-solid-phase spectrophotometry. Spectrochim. Acta. 61: 975-981.

[7] Bhatt M., Shah S., (2010), Development and validation of amitriptyline and its metabolite in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and its application to a bioequivalence study. Biomed. Chromatogr. 24: 1247-1254.

[8] Turkmen Z., Mercan S., Bavunoglu I., Cengiz S., (2013), Development and validation of a densitometric-high-performance thin-layer chromatographic method for quantitative Analysis of amitriptyline in gastric lavage.  J. Planar. Chromatogr. 26: 496-501.

[9] Papoutsis I., Khraiwesh A., Nikolaou P., Pistos C., Spiliopoulou C., Athanaselis S., (2012), A fully validated method for the simultaneous determination of 11 antidepressant drugs in whole blood by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 70: 557-562.

[10] Acedo-Valenzuela M. I., Mora-Diez N., Galeano-Diaz T., Silva-Rodriguez A., (2010), Determination of tricyclic antidepressants in human breast milk by capillary electrophoresis.  Anal. Sci. 26: 699-702.

[11] Osorio A. C. P., Da Cunha A. L. M. C., Khan S., Franco C. J., Pereira-Netto A. D., Aucelio R. Q., (2014), Photochemical derivatization of amitriptyline using a green chemistry approach: Fluorimetric determination and photochemical reaction mechanism. Anal. Methods. 6: 4022-4028.

[12] Jakaria M., Zaman R., Parvez M., Hasanat A., (2015), In Vitro comparative degradation study between two brands of amytriptyline hydrochloride tablet using UV spectrophotometer. Int. J. Pharm. Sci. Res. 6: 209-212.

[13] Deepakumari H. N., Prashanth M. K., Kumar B. C. V., Revanasiddappa H. D., (2015), Highly sensitive and validated spectrophotometric technique for the assay of some antidepressant drugs. J. Appl. Spect. 81: 1004-1011.

[14] Beitollahi H., Raoof J. B., Hosseinzadeh R., (2011), Application of a carbon-paste electrode modified with 2, 7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid. Electroanalysis. 23: 1934-1940.

[15] Ponvel K. M., Narayanaraja T., Prabakaran J., (2015), Biosynthesis of silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications. Int. J. Nano Dimens. 6: 339-349.

[16] Beitollahi H., Ebadinejad F., Shojaie F., Torkzadeh-Mahani M., (2016), A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide. Anal. Methods. 8: 6185-6193.

[17] Ramezani Azghandi O., Farahbakhsh A., (2015), The obtain optimum production conditions for glucose oxidase biosensor using software Qualtek-4. Int. J. Nano Dimens. 6: 23-30.

[18] Radhika D., Samson Nesaraj A., (2014), Chemical precipitation and characterization of multicomponent Perovskite oxide nanoparticles – possible cathode materials for low temperature solid oxide fuel cell. Int. J. Nano Dimens. 5: 1-10.

[19] Jahani Sh., Beitollahi H., (2016), Selective Detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes. Electroanalysis. 28: 2022-2028.

[20] Patris S., Vandeput M., Kenfack G. M., Mertens D., Dejaegher B., Kauffmann J. M., (2016), An experimental design approach to optimize an amperometric immunoassay on a screen-printed electrode for Clostridium tetani antibody determination. Biosens. Bioelectron. 77: 457-463.

[21] Mahmoudi Moghaddam H.,  Beitollahi H.,  Tajik S., Soltani H., (2015), Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid. Electroanalysis. 27: 2620-2628.

[22] Filik H., Cetintas G., Koc S. N.,Gulce H., Boz I., (2014), Nafion-graphene composite film modified glassy carbon electrode for voltammetric determination of p-aminophenol. Russ. J. Electrochem. 50: 243-252.

[23] Beitollahi H., Garkani Nejad F., (2016), Graphene Oxide/ZnO Nano Composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen-printed electrode. Electroanalysis 9: 2237-2244.

[24] Hu C., Deng J., Xiao X., Zhan X., Huang K., Xiao N., Ju S., (2015), Determination of dimetridazole using carbon paste electrode modified with aluminum doped surface molecularly imprinted siloxane.  Electrochim. Acta 158: 298-301.

[25] Beitollahi H., Gholami A., Ganjali M. R., (2015), Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. Mater. Sci. Eng. C. 57: 107-112.

[26] Beitollahi H., Tajik S., Jahani Sh., (2016), Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and Mmagnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite. Electroanalysis. 28: 1093-1099.

[27] Wang Y., Wang S., Tao L.,  Min Q.,  Xiang J., Wang Q., Xie J., Yue Y., Wu S., Li X., Ding H., (2015), A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fluid based on MWNTs-ZnO/chitosan composites modified screen-printed electrode. Biosens. Bioelectron. 65: 31-38.

[28] Molaakbari E., Mostafavi A., Beitollahi H., Alizadeh R., (2014), Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst. 139: 4356-4364.

[29] Li X., Xu H., Yan W., (2016), Electrochemical oxidation of aniline by a novel Ti/TiOxHy/Sb-SnO2 electrode. Chin. J. Catal. 37: 1860-1870.

[30] Beitollahi H., Karimi-Maleh H., Khabazzadeh H., (2008), Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N’-phenyl-hydrazinecarbothioamide. Anal. Chem. 80: 9848-9851.

[31] Gao Y. S., Wu L. P., Zhang K. X., Xu J. K., Lu L. M., Zhu X. F., Wu Y., (2015), Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes. Chin. Chem. Lett. 26: 613-618.

[32] Beitollahi H., Nekooei S., (2016), Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine. Electroanalysis. 28: 645-653.

[33] Zhang G. R., Xu B. Q., (2013), Nano-size effect of Au catalyst for electrochemical reduction of oxygen in alkaline electrolyte. Chin. J. Catal. 34: 942-948.

[34] Beitollahi H., Ghofrani Ivari S., Torkzadeh-Mahani M., (2016), Voltammetric determination of 6-thioguanine and folic acid using a carbon paste electrode modified with ZnO-CuO nanoplates and modifier. Mater. Sci. Eng. C. 69: 128-133.

[35] Keyvan Sh., Zobairi E. D., Islamnezhad A., (2012), Construction of Cu2+-selective electrode and thermodynamic study of the ternary aqueous mixed electrolyte system (CuCl2, KCl, H2O) using nanocomposite-based potentiometric sensor. Int. J. Nano Dimens. 3: 115-119.

[36] Alizadeh T., Ganjali M. R., Akhoundian M., Norouzi P., (2016), Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchim. Acta 183: 1123-1130.

[37] Song H., Ma C., You L., Cheng Z., Zhang X., Yin B., Ni Y., Zhang K., (2015), Electrochemical hydrogen peroxide sensor based on a glassy carbon electrode modified with nanosheets of copper-doped copper(II) oxide. Microchim. Acta 182: 1543-1549.

[38] Suramwar N. V., Thakare S. R., Khaty N. T., (2012), Synthesis and catalytic properties of nano CuO prepared by soft chemical method. Int. J. Nano Dimens. 3: 75-80.

[39] Pourahmad A., (2016), Green chemistry approach for the synthesis of CuO nanostructure. Int. J. Nano Dimens. 7: 121-126.

[40] Zhang X., Sun S., Lv J., Tang L., Kong C., Song X., Yang Z., (2014), Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J. Mater. Chem. A. 2: 10073-10080.

[41] Noorizadeh H., Zeraatkish Y., (2015), Simple chemical method for synthesis of CuO/CuI nanocomposite. Int. J. Nano Dimens. 6: 211-216.

[42] Li C., Yamahara H., Lee Y., Tabata H., Delaunay J. J., (2015), CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology. 26: 305503-305507.

[43] Dehno Khalaji A. A., Malekan F., (2014), Tetranuclear Copper (II) schiff base complexes as new precursor for synthesis of CuO nanoparticles by solid-state thermal decomposition. Int. J. Nano Dimens. 5: 583-586.

[44] Bard A. J., Faulkner L. R., (2001), Electrochemical methods fundamentals and applications, second ed, New York: Wiley.

[45] Rezayati Zad Z., Saeed Hosseiny Davarani S., Taheri A.R., Bide Y., (2016), Highly selective determination of amitriptyline using Nafion-AuNPs@branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids. Biosens. Bioelectron. 86: 616-622.

[46] Duarte E. H., Dos Santos W. P., Hudari F. F., Bott Neto J. L., Sartori E. R., Dall’Antonia L. H., Pereira A. C., Teixeira Tarley C. R., (2014), A highly improved method for sensitive determination of amitriptyline in pharmaceutical formulations using an unmodified carbon nanotube electrode in the presence of sulfuric acid. Talanta. 127: 26-32.

[47] Biryol I., Uslu B., Küçükyavuz Z., (1996), Voltammetric determination of imipramine hydrochloride and amitriptyline hydrochloride using a polymer-modified carbon paste electrode. J. Pharm. Biomed. Anal. 15: 371-381.

[48] Eslami E., Farjami F., (2014), Electrochemical determination of amitriptyline using a nanocomposite carbon paste electrode in human body fluids. J. Phys. Chem. Electrochem. 2: 111-117.