The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper

Document Type: Reasearch Paper


Faculty of Natural Resources, Department of Wood and Paper Science, Tarbiat Modares University, Tehran, Iran


Present paper examines the effect of acid type and hydrolysis conditions on morphology, size, yield and crystallinity of produced cellulose nanocrystal (CNC). Cellulose obtained from waste office paper was hydrolyzed under the same conditions by Maleic acid (MA) and Sulfuric Acid (SA) in separate treatments.  Also this cellulose was hydrolyzed under different timing and temperature by MA and SA. Results showed that produced cellulose nanocrystals have different size, yield and crystallinity under same conditions by MA and SA. MA treatment resulted in higher crystallinity, yield, and disperse solution. Therefore, MA was appeared superior to SA. Based on results the characteristics of nanocrystals are not only depended on hydrolysis conditions, but also on acid type.


Main Subjects

[1] Klem D., Heublein B., Fink H., Bohn A., (2005), Angewandte Chemie: Fascinating biopolymer and sustainable raw material. Int. J. Cellulose. 44: 3358-3393.

[2] Bovey F. A., Winslow E. H., (1981), Macromolecules: An Introduction to polymer Science (pp.518). New York, Academic Press.

[3] Hon D., (1996), Chemical modification of lignocellulosic materials, (pp. 36), New York, Marcel Dekker, Inc.

[4] Hirai A., Inui O., Horii F., Tsuji M., (2009), Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Int. J. Langmuir. 25: 497-502.

[5] Ranby G., (1951), The colloidal properties of cellulose micelles. Int. J.  Discussions Faraday Society. 11: 158-164.

[6] Revol J. F., (1982), On the cross-sectional shape of cellulose crystallites. Valonia ventricosa. Int. J. Carbohydro Polym. 2: 123-134.

[7] Helbert W., Cavaille C. Y., Dufresne A., (1996), Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Int. J. Polym. Comp. 17: 604-611.

[8] Deepthy M. K., Anoop A. V. C., Shantikumar N., (2010), Hydroxyapatite-reinforced polyamide 6, 6 nanocomposites through melt compounding. Int. J. Polym. Mater. 59: 498-509.

[9] Moon J., Frihart C. R., Wegner T. H., (2006), Nanotechnology applications in the forest products industry. Int. J. Forest Products. 56: 4-10.

[10] Zhao Q. L., Xiao D. Z., Chong H. P., (2010), Preparation and characterization of bacterial Cellulose/Polylactide nanocomposites. Int. J. Polymer-Plastics Technol. Engin. 49: 141-146.

[11] Chakraborty A., Sain M., Kortschot M., (2005), Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Int. J. Holzforschung. 59: 102-107.

[12] Das K., Ray D., Bandyopadhyay R. N., Ghosh T., Mohanty A. K., Manjusri M., (2009), A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Int. J. Cellulose. 16: 783-793.

[13] Maiti S., Jayaramudu J., Das K., Reddy S. M., Sadiku R., Ray S. S., Liu D., (2013), Perparation and characterization of nano-cellulose with new shape from different precursor. Int. J. Carbohydrate Polymer. 98: 562-567.

[14] Grunert W., Winter T., (2002), Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Int. J. Polym. Environ. 10: 27-30.

[15] Edgar C. D., Gray D. G., (2002), Influence of dextran on the phase behaviour of suspensions of cellulose nanocrystals. Int. J. Maromolecules. 35: 7400-7406.

[16] Pul L., Heux G., Chauve C., (2000), Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals supensions in nonpolar solvents. Langmuir. Int. J. 16: 8210-8212.

[17] Beck-Cadanedo S., Roman M., Gray D. G., (2004), Effect of Reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Int. J. Biomacromoleules. 6: 1048-1054.

[18] Araki J., Wada M., Kuga S., Okano T., (1998), Flow properties of  microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Int. J. Colloids Surf. 42: 75-82.

[19] Mosier N. S., Sarikaya A., Ladisch C. M., Ladisch M. R., (2001), Characterization of dicarboxylic acids for cellulose hydrolysis. Int. J. Biotechnol. Progress. 17: 474-480.

[20] Filson P. B., Dawson-Andoh B. E., (2009), Sono-Chemical of cellulose nanocrystals from lignocelluloses derived materials. Int. J. Bioresource Technology. 100: 2259-2264.

[21] Mohamad Haafiz M. K., Hassan A., Zakaria Z., Inuwa M., (2014), Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Int. J. Carbohydrate Polymer. 103: 119-125.

[22] Mwaikambo L. Y., Ansell M. P., (2002), Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Int. J.  Appl. Polym. Sci. 84: 2222-2234.

[23] Nickerson R. F., Habrle J. A., (1947), Cellulose intercrystalline structure. Indus. Engineer. Chem. Res. 39: 1507-1512.

[24] Cao X., Chen Y., Chang P. R., Muir A. D., Falk A., (2008), Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Int. J. Express Polym. Let. 2: 502-510.

[25] Wulandari W. T., Rochliadi A., Arcana M., (2016), Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Ser.: Mater. Sci. Eng. 107: 012045-7.

[26] Saeman J. F., (1945), Kinetics of wood sacharification: Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperatures. Int. J. Eng. Chem. 37: 43-52.

[27] Bienkowski P. R., Ladisch M. R., Narayan R., Tsao G. T., Eckert R., (1987), Correlation of glucose (Dextrose) degradation at 90 to 190 °C in 0.4 to 20%  Acid. Int. J. Chem. Eng. Commun. 51: 179-192.

[28] kaya E., Usta M., Kirci H., (2003), The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Int. J. Polym. Degradation and Stability.  81: 559-564.

[29] Behrooz R., Rahimi M., (2011), Effect of cellulose characteristic and hydrolyze condition on morphology and size of nanocrystal cellulose extracted from wheat straw. Int. J. Polym. Mater. Polymer. Biomater. 60: 529-541.

[30] De Souza M. M., Wong J. T., Paillet M., Borsali R., Pecora R., (2003), Translation and rotational dynamics of Rodike Cellulose Whiskers. Int. J. Langmuir. 19: 24-29.

[31] Sheltami R. M., Abrahimi I, Ahmad I., Dufrence A., Kargarzadeh H., (2012), Extraction of cellulose nanocrystals from menkuang leaves (Pandanus tectorius). Carbohydrate Polym. 88: 772-779.

[32] Maarten A., Kootstra J., Elinor L., (2009), Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Int. J. Biochem. Eng. 46: 126-131.

[33] Zhang J. T., Elder Y., Pu A, Ragauskas J., (2007), Facile synthesis of spherical cellulose nanoparticles. Carbohydrate Polym.  69:  607-611.

[34] Ismail K. I., Sabri M. H., Yusra M. A., (2015), Extraction of cellulose nano crystalline from structural characterization. Int. J. Mater. Chem. Phys. 1: 99-109.

[35] Dong J. F, Revol M., Gray D. G., (1998), Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Int. J. Cellulose. 5: 19-32.

[36] Bondeson D., Mathew A., Oksman K., (2006), Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Int. J. Cellulose. 13: 171-180.

[37] Marchessault R. H., Morehead F. F., Koch, M. J., (1961), Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. Int. J. Colloid Sci. 16: 327-344.

[38] Favier V., Chanzy H. S., Cavaille J., (1995), Polymer nanocomposites reinforced by cellulose whiskers. Int. J. Macromolecules. 28: 6365-6367.