Some studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles

Document Type: Reasearch Paper

Authors

1 Chemical Engineering Department, Universiti Teknologi PETRONAS, Tronoh-31750, Perak, Malaysia

2 Gas Processing Center, College of Engineering, Qatar University-2713, Doha, Qatar

3 Government College of Engineering and Ceramic Technology, Kolkata-700010, India

Abstract

In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigations observed that alumina doping affected significantly the morphology, particle size distribution and surface area of the synthesized nanoparticles. From N2 adsorption-desorption isotherms studies it was further noted that alumina doping improved the pore volumes of the synthesized silica nanoparticles and the synthesized silica alumina nanoparticles are mesoporous materials. The hydrophobicity test and thermal stability results confirmed the modification and conversion of silica to hydrophobic materials using alumina.

Keywords

Main Subjects


[1]    Hwang T., Lee H., Kim H., Kim G., (2010), Two layered silica protective film made by a spray-and-dip coating method on 304 stainless steel. J. Sol-Gel sci. Technol. 2010: 1-6.

[2]    Oh Y., Hong L., Asthana Y., Kim D., (2006), Synthesis of super-hydrophilic mesoporous silica via a sulfonation route. J. Indus. Engineer. Chem. 12: 911-917.

[3]    Barandeh F., Nguyen P., Kumar R.,  Iacobucci G., Kuznicki M., Kosterman A., Bergey E., Prasad P., Gunawardena S., (2012), Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS ONE. 7: 1-15.

[4]    Ramazani A., Farshadi A., Mahyari A., Sadri F., Joo S., Azimzadeh Asiabi P., Taghavi Fardood S., Dayyani N., Ahankar H., (2016), Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions. Int. J. Nano Dimens. 7: 41-48.

[5]    Lin Y., (2001), Microporous and dense inorganic membrane: Current status and prospective. Sep. Purif. Technol. 25: 39-55.

[6]    Zou H., Shen S., (2008), Polymer/silica nanocomposites: Preparation, characterization, properties, and application. Chem.  Rev. 108: 3893-3957.

[7]    Hench L., (1990), The sol-gel process. Chem. Rev. 90: 33-72.

[8]    Brinker C., (1988), Hydrolysis and condensation of silicates: Effects on structure.  J.  Non-Cryst. Solids. 100: 31-50.

[9]    Xu S., Hartvickson S., Zhao J., (2011), Increasing surface area of silica nanoparticles with a rough surface.  ACS Appl. Mater. Interfaces. 3: 1865-1872.

[10]  Falcaro P., Innocenzi P., (2009), X-rays to study, induce, and pattern structures in sol–gel materials. J. Sol-Gel Sci. Technol. 57: 236-244.

[11] Klabunde K., Stark J., Koper O., Mohs C., Park D., Decker S., Jiang Y., Lagadic I., Zhang D., (1996), Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem. 100: 12142-12153.

[12]  Stöber W., Fink A., Bohn E., (1968), Controlled growth of monodisperse silica spheres in the micron size range.  J. Colloid Interface Sci. 26: 62-69.

[13]  Prabakar S., Assink R., (1997), Hydrolysis and condensation kinetics of two component organically modified silica sols.  J. Non-Cryst. Solids. 211: 39-48.

[14]  Zhang X., Zhao S., Gao C., Wang S., (2009), Amorphous sol–gel SiO2 film for protection of an orthorhombic phase alloy against high temperature oxidation.  J. Sol-Gel Sci. Technol. 49: 221-227.

[15]  Brinker C., Scherer G., Sol-gel science: The physics and chemistry of sol-gel processing: Academic Pr, 1990.

[16]  Silva C., Airoldi C., (1997), Acid and base catalysts in the hybrid silica sol-gel process. J. Colloid Interface Sci. 195: 381-387.

[17]  Brinker C., Scherer G., (1990), The physics and chemistry of sol-gel processing. J. Sol-Gel Sci. Technol. 141: 58-59.

[18]  Jesionowski T., Krysztafkiewicz A., (1999), Properties of highly dispersed silicas precipitated in an organic medium. J. Dispersion Sci. Technol. 20: 1609-1623.

[19]  An D., Wang Z., Zhao X., Liu Y., Guo Y., Ren S., (2010), A new route to synthesis of surface hydrophobic silica with long-chain alcohols in water phase. Colloids and Surf. A: Physicochem. Engineer. Aspects. 369: 218-222.

[20]  Dékány I., Szántó F., Nagy L., (1985), Sorption and immersional wetting on clay minerals having modified surface. I. Surface properties of nonswelling clay mineral organocomplexes. J. Colloid Interface Sci. 103: 321-331.

[21]  Vrancken K., Possemiers K., Van Der Voort P., Vansant E., (1995), Surface modification of silica gels with aminoorganosilanes. Colloids and Surf. A: Physicochem. Engineer. Aspects. 98: 235-241.

[22]  Daniels M., Francis L., (1998), Silane adsorption behavior, microstructure and properties of glycidoxypropyltrimethoxysilane-modified colloidal silica coatings. J. Colloid Interface Sci. 205: 191-200.

[23]  Xie Y., Hill C., Xiao Z., Militz H., Mai C., (2010), Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A. 41: 806-819.

[24]  Kaas R., Kardos J., (1971), Interaction of alkoxy silane coupling agents with silica surfaces. Polym. Eng. Sci. 11: 11-18.

[25]  Aissaoui N., Bergaoui L., Landoulsi J., Lambert J., Boujday S., (2012), Silane layers on silicon surfaces: Mechanism of interaction, stability and influence on protein adsorption. Langmuir.28: 656-665.

[26]  Simon A., Cohen-Bouhacina T., Porté M., Aimé J., Baquey C., (2002), Study of two grafting methods for obtaining a 3-Aminopropyltriethoxysilane monolayer on silica surface. J. Colloid Interface Sci. 251: 278-283.

[27]  Howarter J., Youngblood J., (2006), Optimization of silica silanization by 3-Aminopropyltriethoxysilane.  Langmuir. 22: 11142-11147.

[28]  Nampi P., Moothetty P., Berry F., Mortimer M., Warrier K., (2010), Aluminosilicates with varying alumina-silica ratios: Synthesis via a hybrid sol-gel route and structural characterisation. Dalton Transactions. 39: 5101-5107.

[29]  Cónsul J., Costilla I., Gigola C., Baibich I., (2008), NO reduction with CO on alumina-modified silica-supported palladium and molybdenum-palladium catalysts. Appl. Catal. A. 339: 151-158.

[30]  Corma A., Pérez-Pariente J., Fornés V., Rey F., Rawlence D., (1990), Synthesis and characterization of silica-alumina prepared from tetraalkylammonium hydroxides. Appl. Catal. 63: 145-164.

[31]  Buelna G., (1999), Sol-gel-derived mesoporous [gamma]-alumina granules. Microporous Mesoporous Mater. 30: 359-369.

[32]  May M., Asomoza M., Lopez T., Gomez R., (1997), Precursor aluminum effect in the synthesis of sol- gel Si- Al Catalysts: FTIR and NMR characterization. Chem. Mater. 9: 2395-2399.

[33]  Cheng Z., Yang Y., (2008), Synthesis and characterization of aluminum particles coated with uniform silica shell. Transact. Nonferrous Metals Soc. of China. 18: 378-382.

[34]  Rao A., and Wagh P., (1998), Preparation and characterization of hydrophobic silica aerogels. Mater. chem. phys. 53: 13-18.

[35]  Wagh P., Rao A., Haranath D., (1998), Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels. Mater. chem. phys. 53: 41-47.

[36]  Reynolds J., Coronado P., Hrubesh L., (2001), Hydrophobic aerogels for oil-spill clean up-synthesis and characterization.  J. Non-Cryst. Solids. 292: 127-137.

[37]  He S., Li Z., Shi X., Yang H., Gong L., Cheng X., (2015), Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area. Adv. Powder Technol. 26: 537-541.