Theoretical calculations of solvation 12-Crown-4 (12CN4) in aqueous solution and its experimental interaction with nano CuSO4

Document Type : Reasearch Paper


Department of Chemistry, Faculty of Education, Ain Shams University, Roxy 11711, Cairo, Egypt


Theoretical study of the electronic structure, and nonlinear optical properties (NLO) analysis of 12-crown-4were done using Density Functional Theory (DFT) evaluations at the B3LYP/6-311G (d,p) level of theory. The optimized structure is nonlinear compound as indicated from the dihedral angles were presented. The calculated EHOMO and ELUMO energies of 12-Crown-4 (12CN4) can be used to explain the charge transfer in 12-Crown-4 (12CN4) and to calculated the global properties; the chemical hardness (η), softness (S) and electronegativity (χ). The NLO parameters: static dipole moment (µ), polarizability (α), anisotropy polarizability (Δα) and first order hyperpolarizability (βtot) of the 12-Crown-4 (12CN4) have been calculated at the same level of theory.The molecular electrostatic potential (MEP) and electrostatic potential (ESP) for the title molecule were investigated and analyzed.  Also the electronic absorption spectra were measured in ethanol and water solvents and the assignment of the observed bands has been discussed by time-dependent density functional theory (TD-DFT) calculations. The correspondences between calculated and experimental transitions energies are satisfactory. From the experimental conductance measurements, the association thermodynamic parameters (KA, ∆GA, ∆HA and ∆SA) and complex formation thermodynamic parameters (Kf, ∆Gf, ∆Hf and ∆Sf) for nano-CuSO4 in presence of 12-crown-4 (12CN4) as chelating agent in 10% ethanol – water solvents at different temperatures (298.15, 303.15, 308.15 and 313.15K) were applied and calculated.


Main Subjects

[1] Pedersen C. J., (1967), Crystalline salt complexes of macrocyclic polyethers. J. Am. Chem. Soc. 89: 385-391.
[2] Arnaud-Neu F., Delgado R., Chaves S., (2003), Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers. Pure. Appl. Chem. 75: 71-102.
[3] Wong P. S. H., Antonio B. J., Dearden D. V., (1994), Gas-Phase studies of valinomycin-alkali metal cation complexes: Attachment rates and cation affinities. J. Am. Soc. Mass Spectrosc. 5: 632-637.
[4] Andreas T., Tsatsas R. W., Stearns W., Risen M., (1972), Nature of alkali metal ion interactions with cyclic polyfunctional molecules. I. Vibrations of alkali ions encaged by crown ethers in solution. J. Am. Chem. Soc. 94:  5247- 5253.
[5] Popov A. I., Lehn J. M., Melson G. A., (Ed.), (1979); Coordination Chemistry of Macrocyclic Compounds, Plenum, New York, 537: Lamb J. D., Izatt R. M., Christensen J. J., Eatough D.J., Melson G. A., (Ed.), (1979) Coordination Chemistry of Macrocyclic Compounds, Plenum, New York, 145.
[6] Hay B. P., Rustad J. R., Zipperer J. P., Wester D. W., (1995), Topological electron density analysis of organosulfur compounds. J. Mol. Struct. 337: 201-207.
[7] El-Azhary A. A., Al-Kahtani A. A., (2004), Conformational study of the structure of free 12-Crown-4. J. Phys. Chem. A. 108: 9601-9607.
[8] El-Azhary A. A., Al-Kahtani A. A., (2005), Experimental and theoretical study of the vibrational spectra of free 12-Crown-4. J. Phys. Chem. A. 109: 4505-4511.
[9] Hori K. N., Dou K., Okano  A., Ohgami  Tsukube H., (2002), Stable of 12-crown-O and its Li complex in
aqueous solution. J. Comp. Chem. 23: 1226-1235.
[10] Onsager L., (1936), Electric Moments of Molecules in Liquids. J. Am. Chem. Soc. 58: 1486-1493.
[11] Cramer C. J., Truhlar D. G., (1999), Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev. 99: 2261-2200.
[12] Tanika A., Hashim A., William A. B., Eiko K., Hideya K., (2011), Theoretical and ATR-FTIR study of free 12-crown-4 in aqueous solution. Chem. Phys. Letts. 502:  253-258.
[13] Mandal K., Kar T., Nandi P. K., Bhattacharyya S. P., (2003), Theoretical study of the nonlinear polarizabilities in H2N and NO2 substituted chromophores containing two hetero aromatic rings. Chem. Phys. Letts. 376: 116-124.
[14] Nandi P. K., Mandal K., Kar T., (2003), Effect of structural changes in sesquifulvalene on the intramolecular charge transfer and nonlinear polarizations: A theoretical study. Chem. Phys. Letts. 381: 230-238.
[15] Prasad P. N., Williams D. J., (1991), Introduction to Nonlinear Optical Effects in Molecules and Polymers. John Wiley & Sons, New York, NY, USA.
[16] Meyers F., Marder S. R., Pierce B. M., Brédas J. L., (1994), Electric field modulated nonlinear optical properties of donor-acceptor polyenes: Sum-over-states investigation of the relationship between molecular polarizabilities (Alpha., Beta. and Gamma.) and bond Length Alternation. J. Am. Chem. Soc. 116: 10703-10714.
[17] Holleman A. F., Wiberg E., (2001), Inor. Chem., San Diego: Acad. Press. ISBN 0-12-352651-5.
[18] David A., (2002), Wright and Pamela Welbourn Environmental Toxicology, Cambridge University Press, UK.
[19] El Sayed M., Abou E., Esam A. G., (2013), Thermodynamics of Solvation for Nano Zinc Oxide in 2 MNH4Cl+ Mixed DMF – H2O Solvents at Different Temperatures. Int. J. Eng. Innov. Tech. 2: 121-126.
[20] Esam A., Gomaa A., (2014), Thermodynamics of complex formation (Conductometrically) between Cu (II) ion and 4-Phenyl -1- Diacetyl Monoxime –3 Thiosemicarbazone (BMPTS) in methanol at different temperatures. J. Sys. Sci. 3: 12-25.
[21] (a) Becke  A., (1993), Densityfunctional thermochemistry. III. The role of exact exchange. Chem. Phys. 98: 5648-5652.   
[22] Lee C., Yang W., Parr R. G., (1988), Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. Condens. Matter.157: 785-789.
[23] Stefanov B, Liu B. G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., (2003), Gaussian, Inc., Pittsburgh P. A.
[24] Frisch M., Trucks J. G. W., Schlegel H. B., Scuseria G. E., (2009), Gaussian, Inc., Wallingford CT.
[25] Dennington K. R., Millam T., Semichem J., (2009),  Gauss View, Version 5 Inc., Shawnee Mission KS.
[26] Avci D., (2011), Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: Semiempirical analysis. Spectrochimica Acta A. 82: 37-43.
[27] Avci D., Başoğlu A., Atalay Y., (2010), NLO and NBO analysis of sarcosine maleic acid by using HF and B3LYP calculations. Struct. Chem. 21: 213-219.
[28] Avci D., Cömert H., Atalay Y., (2008), Ab initio Hartree-Fock calculations on linear and second-order nonlinear optical properties of new acridine-benzothiazolylamine chromophores. J. Mol. Modeling. 14: 161-171.
[29] Pearson R. G., (1986), Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Nat. Acad. Sci. 83: 8440-8441.
[30] Chandra A. K., Uchimara T., (2001), NLO and NBO analysis of sarcosine-maleic acid by using HF and B3LYP calculations. J. Phy. Chem. A. 105: 3578-3582.
[31] Szafran M., Komasa A., Bartoszak-Adamska E., (2007), Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J. Mol. Struct. 827:  101-107.
[32] Ives D. J. G., (1971), Chemical thermodynamics, university chemistry, maconald technical and scientific.
[33] Dickenson R. E., Geis I., Benjamin Chemistry W. A., (1976), Matter, and the Universe, Inc., USA.
[34] Oswal S. L., Desai J. S., Ijardar S. P., Jain D. M., (2009), Studies of partial molar volumes of alkylamine in non-electrolyte solvents II. Alkyl amines in chloroalkanes at 303.15 and 313.15 K. J. Mol. Liquids. 144: 108 - 114.
[35] Zhang D. E., Zhang X. J., Ni X. M., Zheng H. G., Yang D. D., (2005), Synthesis and characterization of NiFe2O4 magnetic nanorods via a PEG-assisted route. J. Magn. Mater. 292: 79-82.
[36] Xia B. Y., Yang P. D., Sun Y. G., (2003), One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15: 353-356.
[37] Duan X., Huang Y., Cui Y., Wang J., Lieber C. M., (2001), Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature. 409: 66-69.
[38] Mohamed N. H., Hamed Esam A., Gomaa S. G., Sanad A., (2014), Thermodynamics of solvation for nano zinc carbonate in mixed DMF-H2O solvents at different temperatures. Int. J. Eng. Innov. Tech. (IJEIT). 4: 203-207.
[39] Liu W. J., He W. D., Zhang Z. C., (2006), Nanogenerators-from scientific discovery to future applications. J. Cryst. Growth. 290: 592-598.
[40] Yizahak M., (1990), Solubility and solvation in mixed solvent systems. Pure and Applied Chem. 62: 2069-2076.
[41] Chen L., Shen L., Xie A., Zhu J., Wu Z., Yang L., (2007), Discovery of diamond in eclogite from the Chinese Continental Scientific Drilling Project Main Hole (CCSD-MH) in the Sulu UHPM belt [in Chinese]. Cryst. Res. Technol. 42: 886-891.
[42] Yurii A., Simonov A., Alexandr D., Marina S., Fonari T., Malinowski I., Elzbieta L., Andrzej C., Jan F., Biernat V. E., Ganin P., (1993), Investigation of structural, thermal and magnetic behaviors of pristine barium carbonate nanoparticles synthesized by chemical Co-Precipitation method. J. Inclusion Phen. Molec. Recognition in Chem. 15:  79-85.
[43] Snehalatha M., Ravikumar C., Hubert Joe I., Sekar N., Jayakumar V. S., (2009), Vibrational spectra and scaled quantum chemical studies of the structure of Martius yellow sodium saltmonohydrate. Spectrochim. Acta. A. 72: 1121-1126.
[44] Scrocco E., Tomasi J., (1979), Interpretation by means of electrostatic molecular potentials. Adv. Quant. Chem. 11: 115-120.
[45] Luque F. J., López J. M., Orozco M., (2000), Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theoret. Chem. Accounts, 103: 343-345.
[46] Okulik N., Jubert A. H., (2005), Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Int. Elect. J. Mol. Des. 4: 17-30.
[47] Politzer P., Murray J. S., (2002), The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 108: 134-142.
[48] Sajan D., Joseph L., Vijayan N., Karabacak M., (2011), Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of l-histidinium bromide monohydrate: A density functional theory. Spectrochim. Acta A. 81: 85-98.
[49] Hansch C., Leo A., Taft R. W., (1991), A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91: 165-195.
[50] Jensen L., Van Duijnen P. T., (2005), The first hyperpolarizability of p-nitroaniline in 1, 4-dioxane: A quantum mechanical/molecular mechanics study. J. Chem. Phys. 123 Article ID 074307.
[51] Sałek P., Vahtras O., Helgaker T., Ågren H., (2002), Density-functional theory of linear and nonlinear time-dependent properties molecular.  J. Chem. Phys. 117: 9630-9635.
[52] Stähelin M., Burland D. M., Rice J. E., (1992), Sign change of hyperpolarizabilities of solvated water. Chem. Phys. Lett. 191: 245-250.
[53] Huyskens F. L., Huyskens P. L., Persoons A. P., (1998), Solvent dependence of the first hyperpolarizability of p-nitroanilines: Differences between nonspecific dipole–dipole interactions and solute-solvent H-bonds. J. Chem. Phys. 108: 8161-8168.
[54] Zhang C. R., Chen H. S., Wang G. H., (2004), Geometry, electronic structure, and related properties of dye sensitizer: 3,4-bis[1-(carboxymethyl)-3-indolyl]-1H-pyrrole-2, 5-dione. Chem. Res. Chin. U. 20: 640-646.
[55] Sun Y., Chen X., Sun L., Guo X., Lu W., (2003), A monolayer organic light-emitting diode using an organic dye salt. Chem. Phys. Lett. 83: 1020-1022.
[56] Christiansen O., Gauss J., Stanton J. F., (1999), Non-Linear Optical Properties of Matter. Chem. Phys. Lett. 305: 51-99.
[57] Cheng L. T., Tam W., Stevenson S. H., Meredith G. R., Rikken G., Marder S. R., (1991), Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 95: 10631-10643.