Green synthesis of Silver nanoparticles using the aqueous extract of Prangos ferulaceae leaves

Document Type: Reasearch Paper

Authors

1 Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

2 Department of Pharmacognosy, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran

Abstract

Nowadays, green chemistry and its advantages are generating interest of researchers toward ecofriendly biosynthesis of the metallic nanoparticles. In this research, a rapid, simple and green method was developed for the synthesis of silver nanoparticles using aqueous extract of Prangos ferulaceae leaves. The synthesized silver nanoparticles were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) methods. The results of DLS, SEM, EDAX, XRD and UV-Vis techniques confirm the synthesis and formation of uniform and spherical shape of silver nanoparticles with average particles size around 10 nm. The aqueous extract of Prangos ferulaceae leaves was found to displays strong potential for the reduction of silver ions and producing of the silver nanoparticles via a very cost effective, clean, nontoxic, ecofriendly method which can be manufactured at a large scale.

Keywords

Main Subjects


[1] Mueller N. C., Nowack B., (2008), Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42: 4447-4453.

[2] Lv Y., Jin S., Wang Y., Lun Z., Xia C., (2016), Recent advances in the application of nanomaterials in enzymatic glucose sensors. J. Iran. Chem. Soc. 13: 1767-1776.

[3] Vaidyanathan R., Kalishwaralal K., Gopalram S., Gurunathan S., (2009), Nanosilver- the burgeoning therapeutic molecule and its green synthesis. Biotechnol. Adv. 27: 924-937.

[4] Sundararajan B., Mahendran G., Thamaraiselvi R., Ranjitha Kumari B. D., (2016), Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L. Bulletin Mater. Sci. 39: 423-431.

[5] Sadeghi B., (2014), Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea. Int. J. Nano Dimens. 5: 575-581.

[6] Sadeghi B., Jamali M., Kia Sh., Amini nia A., Ghafari S., (2010), Synthesis and characterization of silver nanoparticles for antibacterial activity. Int. J. Nano Dimens. 1: 119-124.

[7] Zambare A., Nerpagar T., Chaudhari N., Manchalwad P., Harke S., (2014), Synthesis of silver nanoparticles and their antibacterial activity. Int. J. Nano Dimens. 5: 569-573.

[8] Sedaghat S., Afshar P., (2016), Green bio-synthesis of Silver Nanoparticles Using Ziziphora tenuior L Water Extract. J. Appl. Chem. Res. 10: 103-109.

[9] Ponvel K. M., Narayanaraja T., Pabakaran J., (2015), Biosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications. Int. J. Nano Dimens. 6: 339-349.

[10] Ahmad H., Rajagopal K., Hussain Shah A., (2016), The Green route of Silver nanotechnology: Phytosynthesis and applications. Int. J. Nano. Dimens. 7: 97-108.

[11] Li P., Li S., Wang Y., Han G-Z., (2017), Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Coll. Surf. A: Physicochem. Engin. Asp. 520: 26-31.

[12] Sadeghi B., (2014) Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea. Int. J. Nano. Dimens.5: 575-581.

[13] Abdeen S., Geo S., Sukanya S., Praseetha P.K., Dhanya R.P., Biosynthesis of Silver nanoparticles from Actinomycetes for therapeutic applications. Int. J. Nano. Dimens. 5: 155-162.

[14] Sadeghi B., (2014) Synthesis of silver nanoparticles using leaves aqueous extract of Nasturtium Officinale (NO) and its antibacterial activity. Int. J. Mol. Clin. Microbiol. 4: 428-434.

[15] Abdolmaleki H., purali P., Sohrabi M., (2016), Biosynthesis of silver nanoparticles by two lichens of “Usnea articulate” and “Ramalina sinensis” and investigation of their antibacterial activity against some pathogenic bacteria. Ebnesina. 17: 33-42.

[16] Azarkhalil M. S., Keyvani B., (2016), Synthesis of Silver nanoparticles from spent X-Ray photographic solution via chemical reduction. J. Chem. Chem. Eng. 35: 1-8.

[17] Bunghez I. R., Barbinta Patrascu M. E., Badea N. M., Doncea S. M., Popescu A., Ion R. M., (2012), Antioxidant silver nanoparticles green synthesized using ornamental plants. J. Optoelectron. Adv. Mater. 14: 1016-1022.

[18] Banerjee J., Narendhirakannan R., (2011), Biosynthesis of silver nanoparticles from Syzygium cumini [L.] seed extract and evaluation of their in vitro antioxidant activities. Dig. J. Nanomater. Biostruct. 6: 961-968.

[19] Vankar P. S., Shukla D., (2012), Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl. Nanosci. 2: 163-168.

[20] White G. V., Kerscher P., Brown R. M., Morella J. D., McAllister W., Dean D., Kitchens C. L., (2012), Green synthesis of robust, Biocompatible silver nanoparticles using Garlic Extract. J. Nanomater. 2012: 1-12.

[21] Sukumaran P., Poulose E. K., (2012), Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2: 1-10.

[22] Frattini A., Pellegri N., Nicastro D., Sanctis O., (2005), Preparation of amine coated silver nanoparticles using triethylenetetramine. Mater. Chem. Phys.  94: 148-152.

[23] Szczepanowicz K., Stefanska J., Socha R. O., Warszynski P., (2010),  Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem. Probl. Min. Process. 45: 85-98.

[24] Khaydarov R. A., Khaydarov R. R., Gapurova O., Estrin Y., Scheper T., (2009), Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 11: 1193-1200.

[25] Scaiano J. C., Billone P., Gonzalez C. M., Maretti L., Marin M. L., McGilvray K. L., Yuan N., (2009), Photochemical routes to silver and gold nanoparticles. Pure Appl. Chem. 81: 635-647.

[26] Iravani S., Korbekandi H., Mirmohammadi S. V., Zolfaghari B., (2014), Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9: 385-406.

[27] Venkatesham M., Ayodhya D., Madhusudhan A., Veera Babu N. V., Veerabhadram G., (2014), A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Appl. Nanosci. 4: 113-119.

[28] Gopinath V., MubarakAli D., Priyadarshini S., Priyadharsshini N. M., Thajuddin N., Velusamy P., (2012), Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Coll. Surf. B: Biointerface. 96: 69-74.

[29] Akhlaghi H., (2015), Green synthesis of Silver nanoparticles using Pimpinella anisum L. seed aqueous extract and its antioxidant activity. J. Chem. Health Risks 5: 257-265.

[30] El-Sherbiny I. M., Salih E., Reicha F. M., (2013), Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. J. Nanostruc. Chem. 3: 1-7.

[31] Kumar V., Yadav S. K., (2009), Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84: 151-157.

[32] Dubey M., Bhadauria S., Kushwah B., (2009), Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig. J. Nanomater. Biostruct. 4: 537-543.

[33] Dwivedi A. D., Gopal K., (2010), Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Coll. Surf. A. 369: 1-3.

[34] Kasthuri J., Veerapandian S., Rajendiran N., (2009), Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Coll. Surf. B. 68: 55-60.

[35] Roy K. K., Sarkar C. K., Ghosh C. K., (2015), Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Appl. Nanosci. 5: 945-951.

[36] hashoosh S. I., Fadhil A. M. A., Al-Ani N. K., (2014), Production of Ag nanoparticles using Aloe vera extract and its antimicrobial activity. J. Al-Nahrain. Uni. 17: 165-171.                                                 

[37] Donda M. R., Kudle K. R., Alwala J., Miryala A., Sreedhar B., Rudra M. P., (2013), Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity. Int. J. Curr. Sci. 7: E1-E8.

[38] Negahdary M., Omidi S., Eghbali-Zarch A., Mousavi S. A., Mohseni G., Moradpour Y., Rahimi G., (2015), Plant synthesis of silver nanoparticles using Matricaria chamomilla plantand evaluation of its antibacterial and antifungal effects. Biomed. Res. 26: 794-799.                                                 

[39] Palanivelu J., Kunjumon M. M., Suresh A., Nair A., Ramalingam C., (2015), Green synthesis of silver nanoparticles from Dracaena mahatma leaf extract and its antimicrobial activity.  J. Pharm. Sci. Res. 7: 690-695.

[40] Mozafarian V., (1983), Plants of Umbelliferae Family in Iran, Identification and Distribution Key. Forests and Rangeland Research Institute. 85P.

[41] Shankar S. S., Rai A., Ahmad A., Sastry M., (2004), Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using  Neem (Azadirachta indica) leaf broth. J. Colloid Interf. Sci. 275: 496-502.

[42] Umoren S. A., Obot I. B., Gasem Z. M., (2014), Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. J. Mater. Environ. Sci. 5: 907-914.

[43] Ali M., Kim B., Belfield K., Norman D., Brennan M., Ali G. S., (2016), Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract- a comprehensive study.  Mater. Sci. Eng. C. 58: 359-365. 

[44] Norouzi H., Behmadi H., Larijani K., Allameh S., (2016), Green synthesis of silver nanoparticles using Citrus Unshiu peel extract. Entomol. Appl. Sci. Let. 4: 96-100.

[45] Rao Y. S., Kotakadi V. S., Prasad T. N. V. K. V., Reddy A. V., Gopal D. V. R. S., (2013), Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochimi. Acta Part A: Mol. Biomol. Spectrosc. 103: 156-159.

[46] Jebakumar T., Edison I., Sethuraman M. G., (2012), Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue.  Process Biochem. 47: 1351-1357.

[47] Parameshwaran R., Kalaiselvam S., Jayavel R., (2013), Green synthesis of silver nanoparticles using Beta vulgaris: Role of process conditions on size distribution and surface structure. Mater. Chem. Phys. 140: 135-147.

[48] Thombre R., Chitnis A., Kadam V., Bogawat Y., Colaco R. Kale A., (2014), A facile method for synthesis of biostabilized silver nanoparticles using Eichhornia crassipes  (Mart.) Solms (water hyacinth). Indian J. Biotechnol. 13: 337-341.

[49] Alaraidh I. A., Ibrahim M. M., Arabia S., El-Gaaly G. A., (2014), Evaluation of green synthesis of Ag nanoparticles using Eruca sativa and Spinacia oleracea leaf extracts and their antimicrobial activity. Iran. J. Biotech. 12: 50-55.

[50] Sastry M., Ahmad A., Khan M. I., Kumar R., (2003), Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr. Sci. 85: 162-170.

[51] Philip D., (2011), Mangifera Indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectro. Acta Part A: Mol. Biomol. Spectrosc. 78: 327-331.

[52] Shankar S. S., Rai A., Ankamwar B., Singh A., Ahmad A.,  Sastry M., (2004), Biological synthesis of triangular gold nanoprisms. Nature Mater. 3: 482-488.

[53] Razavi S. M., (2012), Phenolic compounds from the aerial parts of Prangos ferulaceae, with antioxidant activity. Eurasia. J. Biosci. 6: 91-96.

[54] Shokoohinia Y., Sajjadi S. E., Gholamzadeh S., Fattahi A., Behbahani M., (2014), Antiviral and cytotoxic evaluation of coumarins from Prangos ferulacea. Pharm. Biol. 52: 1543-1549.

[55] Sajjadi S. E., Shokoohinia Y., Gholamzadeh S., (2011), Chemical composition of essential oil of Prangos ferulacea (L.) Lindl. Roots. Chemija. 22: 178-180.

[56] Coruh N., Sagdicoglu Celep A. G., Ozgokce F., (2007), Antioxidant properties of Prangos ferulacea (L.) Lindl., Charophyllum macropodum boiss and heracleum persicum Desf. from apiacea family used as food in eastern anatolia and their inhibitpry effects on glutathione-S-transferase. Food chem. 100: 1237-1242.