Computational study of electronic, spectroscopic and chemical properties of Cun(n=2-8) nanoclusters for CO adsorption

Document Type : Reasearch Paper


1 Department of Chemical Technologies, Iranian Research Organization for Science and Technology, Tehran, Iran

2 Department of Chemistry, Payame Noor University, Tehran, Iran


First-principle calculations were carried out to investigate the adsorption of CO over Cun nanoclusters. The structural, spectroscopic and electronic properties like optimized geometries, HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, binding energy, adsorption energy, vibrational frequency and density of states (DOSs) of the pure Cun nanoclusters, and CunCO complexes in their ground state were thoroughly analyzed. The CO adsorbed on the Cun nanoclusters showed a stretch frequency at 1950-2052 cm-1, which was red-shifted relative to that of gas-phase CO (2143 cm-1). This red-shift was believed to arise from the charge transfer from the Cu metal d states to the CO antibonding 2π* level. The CO adsorption on the Cu nanoclusters was chemisorption in nature with the Cu–C bond length (adsorption height) in the range of 1.85-1.92 Å.


Main Subjects

[1] Haberland H., (1994), Clusters of Atoms and Molecules, First ed., Berlin: Springer.
[2] Braunstein P., Oro L. A., Raithby P. R., (1999), Metal Clusters in Chemistry, First ed., Weinheim: Wiley-VCH.
[3] Ro¨sch N., Pacchioni G., (1994), Clusters and Colloids: From Theory to Applications, First ed., Weinheim: Verlag Chemie.
[4] Xu H. X., Suslick K. S., (2010), Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano. 4: 3209-3212.
[5] González B. S., Rodríguez M. J., Blanco C., (2010), One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett. 10: 4217-4221.
[6] Guvelioglu G. H., Ma P., He X., Forrey R. C., Cheng H., (2005), Evolution of Small Copper Clusters and Dissociative Chemisorption of Hydrogen. phys. Rev. lett. 94: 0261031-4.
[7] Chen W., Chen S. W., (2009), Oxygen electroreduction catalyzed by gold nanoclusters: Strong core size effects. Angew. Chem. Int. Ed. 48: 4386-4390.
[8] Huang T. J., Tsai D. H., (2003), CO Oxidation Behavior of Copper and Copper Oxides. Catal. Lett. 87: 173-179.
[9] Muetterties E. L., Rhodin T. N., Band E., Brucker C. F., Pretzer W. R., (1979), Clusters and surfaces. Chem. Rev. 79: 91-96.
[10] Frenking G., Fröhlich N., (2000), The nature of the bonding in transition-metal compounds. Chem. Rev. 100: 717-722.
[11] Zhou M., Andrews L., Bauschlicher C. W., (2001), Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions. Chem. Rev. 101: 1931-1936.
[12] Jernigan G. G., Somorjai G. A., (1994), Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, copper (I) oxide, and copper (II) oxide: A surface science and kinetic study. J. Catal. 147: 567-572.
[13] Pillai R. U., Deevi S., (2006), Room temperature oxidation of carbon monoxide over copper oxide catalyst. Appl. Catal. B. 64: 146-152.
[14] White B., Yin M., Hall A., Le D., Stolbov S., Rahman T., Turro N., O'Brien S., (2006), Complete CO oxidation over Cu2O nanoparticles supported on Silica gel. Nano Lett. 6: 2095-2099.
[15] Blyholder G., (1964), Molecular orbital view of chemisorbed carbon monoxide. J. Chem. Phys. 68: 2772-2776.
[16] Burda C., Chen X. B., Narayanan R., El-Sayed M. A., (2005), Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105: 1025-1032.
[17] Lee C., Yang W., Parr R. G., (1988), Development of the Colle-Salvetti Correlation Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 37: 785-789.
[18] Wadt W. R., Hay P. J., (1985), Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82: 270-275.
[19] Glockler G., (1958), Carbon–Oxygen Bond Energies and Bond Distances. J. Phys. Chem. 62: 1049-1054.
[20] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev. O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., (2009), Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT.
[21] Kahnouji H., Najafvandzadeh H., Hashemifar J., Alaei M., Akbarzadeh H., (2015), Density-functional study of the pure and palladium doped small copper and silver clusters. Chem Phys Lett. 630: 101-107.
[22] Guvelioglu G. H., Ma P., He X., Forrey R. C., Cheng H., (2006), First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H2. phys. Rev. B. 73: 155436(1-10).
[23] Huber K. P., Herzberg G., (1979), Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules, First ed., New York: Van Nostrand.
[24] Rohlfing E. A., Valentini J. J., (1986), UV laser excited fluorescence spectroscopy of the jet-cooled copper dimer. J. Chem. Phys. 84: 6560-6566.
[25] Zhan C. G., Nichols J. A., Dixon D. A., (2003), Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem A.107: 4184-4188.
[26] Moudgil H. K., (2010), Text book of physical chemistry, First ed., New Delhi: PHI Learning.
[27] Dewar M. J. S., (1951), A review of π Complex Theory. Bull. Soc. Chim. Fr: C71.
[28] Stépán K., Dürr M., Güdde J., Höfer U., (2005), Laser-induced diffusion of oxygen on a stepped Pt(111) surface. Surf. Sci. 593: 54-58.