DFT Investigations for sensing capability of a single-walled Carbon nanotube for adsorptions H2, N2, O2 and CO molecules

Document Type : Reasearch Paper


Department of Physics, College of Science, Thi Qar University, Nassiriya 64000, IRAQ


Single-walled carbon nanotubes (SWCNTs) have a great deal of attention due to their unique properties. These properties of SWCNTs can be used in various devices such as nanosensors. SWCNTs nanosensors have fast response time and high sensitivity to special gas molecules which is very favorable for important applications. Recently, gas adsorption over outer surface of SWCNTs nanosensors was arguably a very interesting theoretical study. Here, the sensing capability of (6,0) SWCNTs for adsorption H2, N2, O2 and CO molecules are studied.Thegeometry optimization, electronic, thermodynamic, and vibrational properties have been investigated. All the calculations are based on the density functional theory (DFT) at the B3LYP/6-31G level through the Gaussian 09W program package. It is found that, adding these molecules to SWCNT causing a small increase in the bond lengths, and an increase in the total energy. In IR spectra, it is observed increasing the vibration modes and higher stretching vibration wave numbers of SWCNT with the studies molecules. This work confirms that (6,0) SWCNT can be used as nanosensor, and using DFT investigations, it is possible to obtain much more data to apply in medical science and industrial technologies.


Main Subjects

[1] Iijima S., (1991), Helical microtubules of graphitic carbon. Nature. 354: 56-58.
[2] Baughman R. H., Zakhidov A. A., De Heer W. A., (2002), Carbon nanotubes the route toward applications. Science. 297: 787-792.
[3] Allaedini G., Tasirin S. M., Aminayi P., (2016), Yield optimization of nanocarbons prepared via chemical vapor decomposition of carbon dioxide using response surface methodology. Diam. Related Mater. 66: 196-205.
[4] Kang S. J., Kocabas C., Ozel T., Shim M., Pimparkar N., Alam M. A., (2007), High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotechnol. 2:  230-236.
[5] Smalley R. E., Dresselhaus M. S., Dresselhaus G., Avouris P., (2003), Carbon nanotubes: synthesis, structure, properties, and applications (Vol. 80): Springer Science & Business Media.
[6] Allaedini G., Tasirin S. M., Aminayi P., Yaakob Z., Talib M. Z. M., (2015), Bulk production of bamboo-shaped multi-walled carbon nanotubes via catalytic decomposition of methane over tri-metallic Ni–Co–Fe catalyst. Reaction Kinetics, Mechanisms and Catalysis. 116: 385-396.
[7] Ouyang M., Huang J. L., Lieber C. M., (2002), Fundamental electronic properties and applications of single-walled carbon nanotubes. Accoun. Chem. Res. 35: 1018-1025.
[8] Zhang T., Nix M. B., Yoo B.-Y., Deshusses M. A., Myung N. V., (2006), Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanal. 18: 1153-1158.
[9] Ayissi S., Charpentier P. A., Palotás K., Farhangi N., Schwarz F., Hofer W. A., (2015), Preferential adsorption of TiO2 nanostructures on functionalized single-walled carbon nanotubes: A DFT study. The J. Phys. Chem. C. 119: 15085-15093.
[10] Yoosefian M., Zahedi M., Mola A., Naserian S., (2015), A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube. Appl. Surf. Sci. 349: 864-869.
[11] Zhou Q., Yang X., Fu Z., Wang C., Yuan L., Zhang H., (2015), DFT study of oxygen adsorption on vacancy and Stone-Wales defected single-walled carbon nanotubes with Cr-doped. Physica E: Low-dimensional Systems and Nanostructures. 65: 77-83.
[12] Yoosefian M., Etminan N., (2015), Pd-doped single-walled carbon nanotube as a nanobiosensor for histidine amino acid, a DFT study. RSC Adv. 5: 31172-31178.
[13] Ashrafi F., Ghasemi A. S., (2012), Density Functional Theory (DFT) study of O2, N2 adsorptions on H-capped (5, 0) single walled carbon nanotube (CNT). J. Chem. 9:  2134-2140.
[14] Skoulidas A. I., Sholl D. S., Johnson J. K., (2006), Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J. Chem. Phys. 124:  054708-054711.
[15] Santucci S., Picozzi S., Di Gregorio F., Lozzi L., Cantalini C., Valentini L., (2003), NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory. J. Chem. Phys. 119: 10904-10910.
[16] Kumar D., Kumar I., Chaturvedi P., Chouksey A., Tandon R. P., Chaudhury P. K., (2016), Study of simultaneous reversible and irreversible adsorption on single-walled carbon nanotube gas sensor. Mat. Chem Phys. 177: 276-282.
[17] Rezaei-Sameti M., Yaghoobi S., (2015), Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput. Condens. Matter. 3: 21-29.
[18] Rezaei Sameti M., (2015), The Interaction of HCN Gas on the Surface of Pristine, Ga, N and GaN-Doped (4, 4) Armchair Models of BPNTs: A Computational Approach. Phys. Chem. Res. 3: 265-277.
[19] Lugo I. G., Cuesta J., Sánchez Marín A. S. D., (2016), MP2 Study of physisorption of molecular Hydrogen onto defective nanotubes: Cooperative effect in stone-wales defects. J. Phys. Chem. A. 120: 4951-4960.
[20] Frisch M. J., Trucks G. W., Schegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery J. A., Stratmann Jr. R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkeas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Gomperts R., Matin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Gonzalez C., Challacombe M., Gill P. M. W., John W., Chen B., Wong M. W., Andres J. L., Gonzalez C., Head-Gordon M., Replogle E. S., Pople J. A., GAUSSIAN 98, GAUSSIAN Inc., Pittsburgh, PA,1998.
[21] Oftadeh M., Naseh S., Hamadanian M., (2011), Electronic properties and dipole polarizability of thiophene and thiophenol derivatives via density functional theory. Comp. Theoret. Chem. 966:  20-25.
[22] Khorrampour R., Esrafili M. D., Hadipour N. L., (2009), Density functional theory study of atomic oxygen, O2 and O3 adsorptions on the H-capped (5, 0) single-walled carbon nanotube. Physica E: Low-dimensional Systems and Nanostructures. 41: 1373-1378.
[23] Ghsemi A. S., Ashrafi F., (2012), Density Functional Theory (DFT) study of O2, N2 adsorptions on H-Capped (4, 4) single-walled carbon nanotube. Res. J. Appl. Sci. Eng. Technol. 4: 2523-2528.
[24] Gross E. K. U., Dreizler R. M., (2013), Density functional theory (Vol. 337): Springer Science & Business Media.
[25] Koch W., Holthausen M. C., (2015), A chemist's guide to density functional theory: John Wiley & Sons.
[26] Cramer, C. J. (2013). Essentials of computational chemistry: theories and models: John Wiley & Sons.
[27] Moore C. B., Pimentel G. C., (1964), Infrared spectra of gaseous diazomethane. J. Chem. Phys. 40:329-341.
[28] Choma C. T., Wong P. T. T., (1992), The structure of anhydrous and hydrated dimyristoylphosphatidyl glycerol: A pressure tuning infrared spectroscopic study. Chem. Phys. Lipids. 61: 131-137.