Low-cost and eco-friendly phyto-synthesis of Silver nanoparticles by using grapes fruit extract and study of antibacterial and catalytic effects

Document Type : Reasearch Paper


1 Department of Chemistry, Lorestan University, Khoramabad 68135-465, Iran

2 Department of Biology, Lorestan University, Khoramabad 68135-465, Iran


In this research, silver nanoparticles (Ag NPs) were prepared by a low-cost, rapid, simple and ecofriendly approach using Grape fruit extract as a novel natural reducing and stabilizing agent. The product was characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy and transmission electron microscopy (TEM). The reaction conditions including time, content of reducing agent and silver nitrate, temperature and pH were investigated. The optimum yield of Ag NPs was obtained when 10 mM of silver nitrate was reacted with 9 mL of Grape fruit extract at pH = 9 and heated it to 55 oC within 25 minutes. The crystalline nature of Ag NPs was confirmed from XRD analysis. SEM and TEM images showed that the obtained Ag NPswere spherical in shape and their sizes were in the range of 25-85 nm.   EDX analysis confirmed presence of the elemental silver. On the basis of FT-IR analysis, it can be stated that the hydroxyl, carbonyl and carboxyl functional groups present in bio-molecules of Grape fruit extract are responsible for the reduction of Ag+ ions and stabilization of the obtained Ag NPs. The biosynthesized Ag NPs showed good antimicrobial activity against Gram-positive (Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae)bacteria. In addition, the catalytic activity of the Ag NPs wasstudied for the reduction of nitro compounds by using NaBH4.


Main Subjects

[1] Ahmad H., Rajagopal K., Shah A. H., (2016), The green route of silver nanotechnology: Phytosynthesis and applications. Int. J. Nano Dimens. 7: 97-108.
[2] Klaus T., Joerger R., Olsson E., Granqvist, C. G., (1999), Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. 96: 13611−13614.
[3] Roh Y., Lauf R. J., McMillan A. D., Zhang C., Rawn C. J., Bai J., Phelps, T. J., (2001), Microbial synthesis and the characterization of metal substituted magnetites. Solid State Commun. 118: 529−534.
[4]  Nair B., Pradeep,T., (2002), Coalescence of nanoclusters and the formation of sub-micron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293−298.
[5] Yong P., Rowson N. A., Farr J. P. G., Harris I. R., Macaskie, L. E., (2002), Bioreduction and biocrystallization of palladium by desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng. 80: 369−379.
[6] Husseiny M. I., El-Aziz M. A., Badr Y., Mahmoud, M. A., (2007), Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A: 67: 1003−1006.
[7] Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S. R., Khan M. I., Parishcha R., Ajaykumar P. V., Alam M., Kumar R., Sastry, M., (2001), Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: A novel biological approach to nanoparticles synthesis. Nano Lett. 1: 515−519.
[8] Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S. R., Khan M. I., Ramani R., Parischa R., Ajaykumar P. A., Alam M., Sastry M., Kumar, R., (2001), Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40: 3585−3588.
[9] Ahmad A., Senapati S., Khan, M. I., Kumar R., Sastry, M., (2005), Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus. Trichothecium sp. J. Biomed. Nanotechnol. 1: 47−53.
[10] Ahmad A., Senapati S., Khan M. I., Kumar R., Ramani R., Srinivas V., Sastry, M., (2003), Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnol. 14: 824−828.
[11] Ahmad A., Senapati S., Khan M. I., Kumar R., Sastry, M., (2003), Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir. 19: 3550−3553.
[12] Sastry M., Ahmad A., Khan M. I., Kumar, R., (2003), Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162−170.
[13] Kowshik M., Arhtaputre S., Kharrazi S., Vogel W., Urban J., Kulkarni S. K., Paknikar, K. M., (2003), Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnol. 14: 95-100.
[14] Shenton W., Douglas T., Young M., Stubbs G., Mann, S., (1999), Inorganic−organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11: 253−256.
[15] Lee S. W., Mao C., Flynn C., Belcher, A. M., (2002), Ordering of quantum dots using genetically engineered viruses. Science. 296: 892−895.
[16] Merzlyak A., Lee S. W., (2006), Phage as template for hybrid materials and mediators for nanomaterials synthesis. Curr. Opin. Chem. Biol.10: 246−252.
[17] Iravani, S., (2011), Green synthesis of metal nanoparticles using plants. Green Chem. 13: 2638−2650.
[18] Shankar S., Rai A., Ahmad A., Sastry M., (2004), Rapid synthesis of Au, Ag, and bimetallic Au core−Ag shell nanoparticles using Azadirachta indica leaf broth. J. Colloid Interface Sci. 275: 496–502.
[19] Prakash P., Gnanaprakasam P., Emmanuel R., Arokiyaraj S., Saravanan, M., (2013), Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B. 108: 255–259.
[20] Vidhu V. K., Aromal S. A., Daizy P., (2011), Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A: 83: 392–397.
[21] Kannan R. R. R., Arumugam R., Ramya D., Manivannan K., Anantharaman, P., (2013), Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl. Nanosci. 3: 229–233.
[22] Prathna T., Chandrasekaran N., Raichur A., Mukherjee, A., (2011), Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle Size. Colloids Surf. B. 82: 152–159.
[23] Raghunandan D., Mahesh B., Basavaraja S., Balaji S., Manjunath S., Venkataraman, A., (2011), Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J. Nanopart. Res. 13: 2021–2028.
[24] Njagi E. C., Huang H., Stafford L., Genuino H., Galindo H. M., Collins J. B., Hoag G. E., Suib, S.L., (2010), Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts. Langmuir. 27: 264−271.
[25] Ponvel K. M., Narayanaraja T., Prabakaran J., (2015), Biosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications. Int. J. Nano Dimens. 6: 339-349. 
[26] Saxena A., Tripathi R. M., Singh, R. P., (2010), Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Biostruct. 5: 427−432.
[27] Ali D. M., Thajuddin N., Jeganathan K., Gunasekhran, M., (2011), Plant extract mediated synthesis of silver and gold nanoparticles and its antimicrobial activity against clinically isolated pathogens. Colloids Surf. B. 85: 360−365.
[28] Banerjee J., Narendhirakannan, R. T., (2011), Biosynthesis of Silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig. J. Nanomater. Biostruct. 6: 961−968.
[29] Vijaya. P. P., Ali  M. S., Saranya  R. S., Yogananth N., Anuratha V., Parveen P. K., (2013), Antimicrobial activity and characterization of biosynthesized silver nanoparticles from Anisochilus carnosus. Int. J. Nano Dimens. 3: 255-262.
[30]  Ali  S. M., Anuradha V., Yogananth N., Rajathilagam R., Chanthuru A., Marzook S. M., (2015), Green synthesis of Silver Nanoparticle by Acanthus ilicifoliusmangrove plant against Armigeressubalbatus and Aedesaegyptimosquito larvae. Int. J. Nano Dimens. 6: 197-204.
[31] Sadeghi B., (2014), Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea. Int. J. Nano Dimens. 5: 575-581.
[32] Kaur K., Komal R., (2016), Comparative analysis of antibacterial activity of Silver nanoparticles synthesized using leaf extract of wheat varieties (PBW343, Triticum durum and Aegilops tauschii). Int. J. Nano Dimens. 7: 137-143.
[33] Rao M. L., Savithramma, N., (2011), Biological synthesis of silver nanoparticles using Svensonia Hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J. Pharm. Sci. Res. 3: 1117-1121.
[34] Satyavani K., Ramanathan T., Gurudeekan, S., (2011), Green synthesis of silver nanoparticles using stem dried callus extract of bitter apple (Citrullus colocynthis). Dig. J. Nanomater. Biostruct. 6: 1019−1024.
[35] Edison J. I. T., Sethuraman, M. G., (2012), Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47: 1351-1357.
[36] Ramar M., Manikandan B., Marimuthu P. N., Raman T., Mahalingam A., Subramanian P., Karthick S., Munusamy, A., (2015), Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF7. Spectrochim. Acta: A. 140: 223−228.
[37] Singha S., Saikia J. P., Buragohain, A. K., (2013), A novel green synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids Surf: B. 102: 83-85.
[38] Umadevi M., Bindhu M. R., Sathe, V., (2013), A novel synthesis of malic acid capped silver nanoparticles using Solanum lycopersicums fruit extract. J. Mater. Sci. Technol. 29: 317-322.
[39] Rimal Isaac R. S., Sakthivel G., Murthy Ch., (2013), Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J. Nanotech. 13: 1-6.
[40] Ghaffari-Moghaddam M., Hadi-Dabanlou, R., (2014), Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J. Ind. Eng. Chem. 20: 739-744.
[41] Ramesh P. S., Kokila T., Geetha D., (2015), Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta: A. 142: 339-343.
[42] Food & Agricultural Organization of the United Nations, (2011), Rome. www.fao.org.
[43] Stagos D., Kazantzoglou G., Magiatis P., Mitaku S., Anagnostopoulos K, Kouretas, D., (2005), Effects of plant phenolics and grape extracts from Greek varieties of Vitis vinifera on Mitomycin C and topoisomerase I induced nicking of DNA. Int. J. Mol. Med. 15: 1013–1022.
[44] Stagos D. Kazantzoglou G., Theofanidou D., Kakalopoulou G., Magiatis P., Mitaku S., Kouretas, D., (2006), Activity of grape extracts from Greek varieties of Vitis vinifera against mutagenicity induced by bleomycin and hydrogen peroxide in Salmonella typhimurium strain TA102. Mutat. Res. 609: 165-175.
[45] Shrotriya S., Deep G., Gu M., Kaur M., Jain A. K., Inturi S., Agarwal R., Agarwal, C., (2012), Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells. Carcinogenesis. 33: 848-858.
[46] Sun T., Chen Q. Y., Wu L. J., Yao X. M., Sun, X. J., (2012), Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food Chem. Toxicol. 50: 3462-3467.
[47] Lin Y. S., Lu Y. L., Wang G. J., Chen L. G., Wen C. L., Hou, W. C., (2012), Ethanolic extracts and isolated compounds from small-leaf grape (Vitis thunbergii var. taiwaniana) with antihypertensive activities. J. Agric. Food Chem. 60: 7435−7441.
[48] Jayaprakasha G. K., Tamil S., Sakariah, K. K., (2003), Antibacterial and antioxidant activities of grape (Vitis Vinifera) seed extracts. Food Res. Int. 36: 117-122.
[49] Soares De Moura R., Costa Viana F. S., Souza M. A., Kovary K., Guedes D. C., Oliveira E. P., Rubenich L. M., Carvalho L. C., Oliveira R. M., Tano T., Gusmao Correia, M. L., (2002), Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J. Pharm. Pharmacol. 11: 1515-1520.
[50] Cuevas V. M., Calzado Y. R., Guerra Y. P., Year A. O., Despaigne S. J., Ferreiro R. M., Quintana, D. C., (2011), Effects of grape seed extract, vitamin C and vitamin E on ethanol and aspirin-induced ulcers. Adv. Pharmacol. Sci. 2011: 1-6.
[51] Kim J. Y., Jeong H. Y., Lee H. K., Kim S., Hwang B. Y., Bae K., Seong, Y. H., (2012), Neuroprotection of the leaf and stem of Vitis amurensis and their active compounds against ischemic brain damage in rats and excitotoxicity in cultured neurons. Phytomedicine. 19: 150−159.
[52] Rivière C., Papastamoulis Y., Fortin P. Y., Delchier N., Andriamanarivo S., Waffo-Teguo P., Kapche G., Amira-Guebalia H., Delaunay J. C., Mérillon J. M., Richard T., Monti, J. P., (2010), New stilbene dimers against amyloid fibril formation. Bioorg. Med. Chem. Lett. 20: 3441-3443.
[53] Deliorman Orhan D., Orhan N., Ozcelik B., Ergun, F., (2009), Biological activities of Vitis vinifera L. leaves. Turk. J. Biol. 33: 341-348.
[54] Doshi P., Adsule P., Banerjee, K., (2006), Phenolic composition and antioxidant activity in grape vine parts and berries (Vitis vinifera L.) Kishmish Chornyi (Sharad Seedless) during maturation. Int. J. Food Sci. Technol. 41: 1-9.
[55] Xia E. Q., Deng G. F., Guo Y. J., Li H. B., (2010), Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 11: 622-646.
[56] Park J., Joo J., Kwon S. G., Jang Y., Hyeon T., (2007), Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46: 4630-4660.
[57] Martinez-Castanon G. A., Nino-Martinez N., Martinez-Gutierrez F., Martinez-Mendoza J. R, (2008), Synthesis and antibacterial activity of Silver nanoparticles with different sizes. J. Nanopart. Res. 10: 1343-1348.
[58] Roopan S. M., Rohit Madhumitha G., Rahuman A. A., Kamaraj C., Bharathi A., (2013), Low-cost and ecofriendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind.  Crops Prod. 43: 631-635.
[59] Pimprikar P. S., Joshi S. S., Kumar A. R., Zinjarde S. S., Kulkarni S. K., (2009), Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf: B. 74: 309-316.
[60] Cullity D. C., (1978), Elements of X-ray Diffraction, Second ed. Addison-Wesley, MA.
[61] Rajesh W. R., Jaya R. L., Niranjan S. K., Sahebrao B. M. D. K., (2009),  Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.), Curr. Nanosci. 5: 117-122.
[62] Marambio-Jones C., Hoek E. M. V., (2010), A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12: 1531-1551.
[63] Nel A. E., Madler L., Velegol D., Xia T., Hoek E. M. V., Somasundaran P., (2009), Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8: 543-557.
[64] AshaRani P. V., Mun G. L. K., Hande M. P., Valiyaveettil S., (2009), Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3: 279-290.
[65] Liu J. Y., Sonshine D. A., Shervani S., Hurt R. H., (2010), Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 4: 6903-6913.