Effect of nano Zinc Oxide on gas permeation through mixed matrix poly (Amide-6-b-Ethylene Oxide)-based membranes

Document Type: Reasearch Paper

Authors

1 Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

2 Separation Processes Research Group (SPRG), Department of Engineering, University of Kashan, Kashan, Iran

3 Energy Research Institute, University of Kashan, Ghotb-e-Ravandi Ave., Kashan, Iran

Abstract

Poly (amide-6-b-ethylene oxide)/Zinc Oxide (PEBA/ZnO) mixed matrix membranes were fabricated using ethanol/water as solvent by solvent casting method. The concentration of ZnO in membrane was set to 0.1 wt.% and the synthesized membranes were characterized by AFM and FTIR. Effects of ZnO nanoparticle on CO2, CH4 and N2 permeabilities, and CO2/N2 and CO2/CH4 selectivities of the membranes were investigated at the ambient temperature and pressure range of 4–12 bar. The results revealed that the CO2 permeability of the nano-composite membrane increased 158 % with pressure, from 54.08 barrer (at 4 bar) to 139.59 barrer (at 12 bar). Furthermore, CO2 permeability for the nano-composite membrane was higher than neat polymeric membrane. The PEBA/ZnO nano-composite membranes thus provide a promising potential for CO2/N2 and CO2/CH4 separation.

Keywords

Main Subjects


[1]         Koros W. J., Mahajan R., (2001), Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Memb. Sci. 181: 141-146.

[2]         Nath K., Maroulis Z. B., George D. S., (2008), Membrane Separation Processes, in: Food Process Design. 34: 336-340.

[3]         Li N. N., Fane A. G., Ho W. S. W., Matsuura T., (2008), Seawater desalinationby ultralowenergy reverse osmosis. Adv. Memb. Technol. and Applics. 217-238.

[4]         Robeson L. M., (1991), Correlation of separation factor versus permeability for polymeric membranes. J. Memb. Sci. 62: 165–185.

[5]         Robeson L. M., (2008), The upper bound revisited. J. Memb. Sci. 320: 390–400.

[6]         Bertelle S., Gupta T., Roizard D., Vallières C., (2006), Study of polymer-carbon mixed matrix membranes for CO2 separation from flue gas. Desalination. 199: 401–402.

[7]         Groß A., Heintz A., (2000), Diffusion coefficients of aromatics in nonporous PEBA membranes. J. Memb. Sci. 168: 233–242.

[8]         Cen Y., Staudt-Bickel C., Lichtenthaler R. N., (2002), Sorption properties of organic solvents in PEBA membranes. J. Memb. Sci. 206: 341–349.

[9]         Liu L., Chakma A., Feng X., (2004), A novel method of preparing ultrathin poly(ether block amide) membranes. J. Memb. Sci. 235: 43–52.

[10]       Kujawski W., Warszawski A., Ratajczak W., Porȩbski T., (2004), Application of pervaporation and adsorption to the phenol removal from wastewater. Sep. Purif. Technol. 40: 123–132.

[11]       Wu P., Field R. W., England R., Brisdon B. J., (2001), A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams. J. Memb. Sci. 190: 147–157.

[12]       Holden G., (2011), 6 Thermoplastic Elastomers. Appl. Plast. Eng. Handb. - Process. Mater. 77–91.

[13]       Deleens G., Foy P., Maréchal E., (1977), Synthese et caracterisation de copolycondensats sequences poly(amide-seq-ether)-II. Poly-condensation d’oligomeres polyamides-11diacides diesters avec des oligomeres polyethers dihydroxy. Eur. Polym. J. 13: 343–351.

[14]       Flesher J. R., (1987), Polyether block amide: high-performance TPE. Mod. Plast. 100–110.

[15]       Surya Murali R., Sridhar S., Sankarshana T., Ravikumar Y. V. L., (2010), Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 49: 6530–6538.

[16]       Car A., Stropnik C., Yave W., Peinemann K. V., (2008), PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J. Memb. Sci. 307: 88–95.

[17]       Yave W., Car A., Peinemann K. V., (2010), Nanostructured membrane material designed for carbon dioxide separation. J. Memb. Sci. 350: 124–129.

[18]       Chung T. S., Jiang L. Y., Li Y., Kulprathipanja S., (2007), Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32: 483–507.

[19]       Vu D. Q., Koros W. J., Miller S. J., (2003), Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Memb. Sci. 211: 311–334.

[20]       Vu D. Q., Koros W. J., Miller S. J., (2003), Mixed matrix membranes using carbon molecular sieves. J. Memb. Sci. 211: 311–334.

[21]       Anson M., Marchese J., Garis E., Ochoa N., (2004), ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. J. Memb. Sci. 243: 19–28.

[22]       Ahn J., Chung W. J., Pinnau I., Guiver M. D., (2008), Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Memb. Sci. 314: 123–133.

[23]       Kolodziejczak-Radzimska A., Jesionowski T., (2014), Zinc oxide-from synthesis to application: A review. Materials (Basel). 7: 2833–2881.

[24]       Oxide Z., (2013), Synthesis and enhanced mechanical properties of nano Zinc Oxide in Polyvinyl alcohol and Polyvinyl pyrollidone composite film. Int. J. Nano Dimens. 4: 153–159.

[25]       Wang Z. L., (2004), Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16: R829–R858.

[26]       Salavati-Niasari M., Davar F., Mazaheri M., (2008), Preparation of ZnO nanoparticles from [bis(Acetylacetonato) Zinc(II)]-Oleylamine complex by thermal decomposition. Mater. Lett. 62: 1890–1892.

[27]       Mastali N., Bakhtiari H., (2013), Investigation on the structural, morphological and photochemical properties of spin-coated TiO2 and ZnO thin films prepared by sol-gel method. Int. J. Nano Dimens. 5: 113–121.

[28]       Soroko I., Livingston A., (2009), Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J. Memb. Sci. 343: 189–198.

[29]       Balta S., Sotto A., Luis P., Benea L., (2012), A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J. Memb. Sci. 389: 155–161.

[30]       Leo C. P., Cathie Lee W. P., Ahmad A. L., Mohammad A. W., (2012), Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep. Purif. Technol. 89: 51–56.

[31]       Hong J., He Y., (2012), Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination. 302: 71–79.

[32]       Silane T., Acid O., (2015), Surface modification of ZnO nano-particles with Trimetoxyvinyl Silane and Oleic Acid and studying their dispersion in organic media. Int. J.Nano Dimens. 6: 67–75.

[33]       Salavati-Niasari M., Davar F., Fereshteh Z., (2009), Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chem. Eng. J. 146: 498–502.

[34]       Nejad M. N., Asghari M., Afsari M., (2016), Investigation of Carbon Nanotubes in Mixed Matrix Membranes for Gas Separation: A Review. Chem. Bio. Eng.  Rev. 55: 12616-12631.

[35]       Mahmoudi A., Asghari M., Zargar V., (2015), CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. J. Ind. Eng. Chem. 23: 238–242.