Electrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation

Document Type : Reasearch Paper


1 Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Nano-Optoelectronics Lab, Sheykh Bahaee Research Complex, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Chemistry, University of Qom, Qom, Iran



In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structures were investigated using the quantum chemical information analysis which leads to the energy band gap, dipole moments, electrical charges and the DOS of these structures. Further TD-DFT calculations were performed to obtain the optical properties of the structure designs to investigate the electron mobility, indicating higher conductivity and higher rectifying voltage in the CNT terminated by Sn.


Main Subjects

[1] Mceuen P. L., Fuhrer M. S., Park H., (2002), Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1: 78-85.
[2] Lugli P., Di Carlo A., (2004), Molecular electronics. 4th IEEE conference on Nanotechnology. (Tutorial 3).
[3] Yam Ch., Mo Y., Wang F., Li X., Chen G., Zheng X., (2008), Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit. Nanotehnol. 19: 495203-495300.
[4] Srivastava D., Wei Ch., Cho K., (2003), Nanomechanics of carbon nanotubes and composites. Appl. Mech. Rev. 56: 215-230.
[5] Avouris Ph., Freitag M., Perebeinos V., (2008), Carbon-nanotube photonics and optoelectronics. Nature photonics. 2: 341-350.
[6] Rida J., Bahardiwaj A. K., Jaiswal A. K., (2014), Design optimization of optical communication systems using carbon nanotubes (CNTs) based on optical code division multiple access (OCDMA). Int. J. Comp. Sci. Network Security. 14: 102-112.
[7] Zhukovskii Y., Piskunov S., Pungo N., Berzina B., (2009), Ab initio simulations on the atomic and electronic structure of single-walled BN nanotubes and nanoarches. J. Phys. Chem. Solids. 70: 796-803.
[8] Niraj S., Jiazhi M., John T. W. Y., (2006), carbon nanotubes based sensors. J. Nanosci. Nanotech. 18: 573-590.
[9] Peng Sh., O`Keefe J., Wei Ch., Cho K., (2001), Carbon nanotubes chemical and mechanical sensors. Conference paper for the 3th International Workshop on structural health monitoring.
[10] Yan Y., Miao J., Yang Zh., Xing-Xiao F., Bin Yang H., Lio B., (2015), Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44: 3295-3346.
[11] Javey A., Guo J., Wang Q., Lundstrom M., Dai H., (2003), Ballistic carbon nanotube field-effect transistors. Nature. 424: 654-657.
[12] Mann D., Javey A., Kong J., Wang Q., Dai H., (2003), Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3: 1541-1544.
[13] ScarSelli M., Castrucci P., De Crescenzi M., (2012), Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. Condens. Matter. 24: 313202-313238.
[14] Rosenblatt S., Yaish Y., Park J., Gore J., Sazonova V., (2002), High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2: 869-872.
[15] Seidel R. V., Graham A. P., Kretz J., Rajasekharan B., (2005), Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5: 147-150.
[16] Pecchia A., Carlo A. Di, (2004), Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67: 1497-1561.
[17] Kamalian M., Jalili Y. S., Abbasi A., (2015), Density functional theory of the carbon nanotube based p-n junction by substitutation of carbon atoms with B, N, Ge and Sn. Indian J. Phys. 89: 663-669.
[18] Najafpour J., Monajjemi M., Aghaei H., Zare K., (2015), The chemical electronic properties of PNP molecular transistor based on (4, 3) chiral. Fuller.  Nanotub. Car. N. 23: 218-232.
[19] Czerw R., Terrones M., Charlier J. C., Blasé X., Foley B., (2001), Identification of electron donor states in N-doped carbon nanotubes. Nano lett. 1: 457-460.
[20] Li J., Glerup M., Khlobystov A. N., Wiltshire J. N., (2006), The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon. 44: 2752-2757.
[21] Wei D. C., Liu Y. Q., Wang Y., Zhang H., Huang L., Yu J., (2009), Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9: 1752-1758.
[22] Yu S. S., Zheng W. T., (2010), Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones and graphene nanoribbons. Nanoscale. 2: 1069-1082.
[23] Chakraborty B., Modak P., Banerjee S., (2010), Deformation and polarization in single walled carbon nanotube due to doping of group-IV elements: A principle investigation. AIP Conf. Proc. 1313: 364-367.
[24] Qian D., Crocker M., Pandurangan A., Morin C., (2010), Synthesis of germanium/multi-walled carbon nanotube coresheath structures via chemical vapor deposition. Croatia, DC: Intech.
[25] Hierold C., Jungen A., Stampfer C., Helbling T., (2007), Nano electromechanical sensors based on carbon nanotubes. Sensors and Actuators A-Physical. 136: 51-61.
[26] Becke A. D. J., (1993), Density-functional thermochemistry. III. The role of exact exchange.  Chem. Phys. 98: 5648-5653.
[27] Lee C., Yang W., Parr R. G., (1998), Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B. 37: 785-790.
[28] Frisch M. J., Trucks J. W., Schlegel H. B., Scuseria G. E., Rob M. A., Cheeseman J. R., (2009), Gaussian 03 (Revision Gaussian), Inc., Wallingford, CT.
[29] O’Boyle N., (2013), GaussSum 3.0, GaussSum Inc., (Cambridge, UK).
[30] Reed A. E., Curtiss L. A., Weinhold F., (1988), Intermolecular interaction from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88: 899-926.