Synthesize and characterization of Aminosilane functionalized MCM-41 for removal of anionic dye: Kinetic and thermodynamic study

Document Type : Reasearch Paper


1 Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

2 Department of Textile Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran



In this study, removal of Acid blue 62 from aqueous solution by mesoporous silicate MCM-41 modified by Aminopropyltriethoxysilane (APTES) composite was studied. Properties of synthesized composite were analyzed and confirmed by SEM, EDX and FTIR. Results show that Langmuir adsorption isotherm has the best compatibility with the results of experiments. Kinetic analysis using pseudo-first-order model, pseudo-second-order and the intra-particle diffusion model was carried out. Results also confirmed that adsorption process is compatible with the pseudo-second-order kinetic model. Thermodynamic parameters such as Gibbs free energy changes (ΔGo), Enthalpy changes (ΔHo) and Entropy changes (ΔSo) were calculated. Negative value of ΔGo and positive value of ΔHo show that adsorption of Acid blue 62 on aminated nanocomposite is a spontaneous process also endothermic.


Main Subjects

[1] Jiang  P. ,  Ren D., He D.,  Fu W.,  Wang J., Gu M., (2014), An easily sedimentable and effective TiO2 photocatalyst for removal of dyes in water. Sep. Purif. Technol. 122: 128-132.
[2] Oturkara C. C., Nemade H. N., Mulik P. M., Patole M. S., Hawaldar R. R., Gawai K. R., (2011), Mechanistic investigation of decolorization and degradation of reactive red 120 by Bacillus lentus BI377. Bioresour. Technol. 102: 758-764.                                                      
[3] Çelekli A., İlgün G., Bozkurt H., (2012), Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria. Chem. Eng. J. 191: 228–235.
[4] Qin Q., Ma J., Liu K., (2009), Adsorption of anionic dyes on ammonium-functionalized MCM-41. J. Hazard. Mater. 162: 133–139.
[5] Salleh M. A. M., Khalid Mahmoud D., Abdul Karim W. A. W., Idris A., (2011), Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination. 280: 1-13.
[6] El Qada E. N., Allen S. J., Walker G. M., (2006), Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm.  Chem. Eng. J. 124: 103-110.
[7] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., (1992), ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 359: 710-712.
[8] Tanaka M., Itadani A., Kuroda Y., Iwamoto M., (2012), Effect of Pore Size and Nickel Content of Ni-MCM-41 on Catalytic Activity for Ethene Dimerization and Local Structures of Nickel Ions. J. Phys. Chem. C. 116: 5664-5672.
[9] Wongsakulphasatch S.,  Kiatkittipong W., Saiswat J., Oonkhanond B., Striolo A., Assabumrungrat S., (2014), The adsorption aspect of Cu2+ and Zn2+ on MCM-41 and SDS-modified MCM-41. Inorg. Chem. Commun. 46: 301-304.
[10] Mehraban Z., Farzaneh F., (2006), MCM-41 as selective separator of chlorophyll-a from β-carotene and chlorophyll-a mixture. Microp. Mesop. Mater. 88: 84-90.
[11] Binaeian E., Seghatoleslami N., Chaichi M. J., (2016),  Synthesis of oak gall tannin-immobilized hexagonal mesoporous silicate (OGT-HMS) as a new super adsorbent for the removal of anionic dye from aqueous solution. Desalination Water Treat. 57: 8420–8436.
[12] Tayebi H. A., Dalirandeh Z., Shokuhi Rad A., Mirabi A., Binaeian E., (2016), Synthesis of polyaniline/Fe3O4 magnetic nanoparticles for removal of reactive red 198 from textile waste water: Kinetic, isotherm, and thermodynamic Studies. Desalination Water Treat. doi: 10.1080/19443994.2015.1133323.
[13] Shabandokht M., Binaeian E., Tayebi H. A., (2016), Adsorption of food dye Acid blue 62onto polyaniline modified rice husk composite: isotherm and kinetic analysis. Desalination Water Treat. 16: 1-13.
[14] Jiang T. S., Wu D. L., Song J. N., Zhou X. P., Zhao Q. A., Ji M. R., Yin H. B., (2011), Synthesis and characterization of mesoporous ZrMCM-48 molecular sieves with good thermal and hydrothermal stability. Powder Technol. 207: 422-427.
[15] Parida K., Mishra K. G., Dash S. K., (2012), Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: Equilibrium and kinetic studies. J. Hazard. Mater. 241: 395-403.             
[16] Qin Q., Ma J., Liu K., (2009), Adsorption of anionic dyes on ammonium-functionalized MCM-41. J. Hazard. Mater. 162: 133–139.
[17] Idris S. A., Harvey S. R., Gibson L. T., (2011), Selective extraction of mercury(II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion. J. Hazard. Mater. 193: 171– 176.
[18] Wongsakulphasatch S., Kiatkittipong W., Saiswat J., Oonkhanond B, Striolo A., Assabumrungrat S., (2014), The adsorption aspect of Cu2 + and Zn2 + on MCM-41 and SDS-modified MCM-41. Inorg. Chem. Commun. 46: 301-304.
[19] Kamarudin K. S. N., Alias N., (2013), Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Process. Technol. 106: 332–337.
[20] Asouhidou D. D., Triantafyllidis K. S.,  Lazaridis N. K., Matis K. A., (2009), Adsorption of Remazol Red 3BS from aqueous solutions using APTES- and cyclodextrin-modified HMS-type mesoporous silicas. Colloids Surf. A: Physicochem. Eng. Aspects. 346: 83–90.
[21] Rahman M. M., Akter N., Karim M. R., Ahmad N., Rahman M. M., Siddiquey I. A., Bahadur N. M., Hasnat M. A., (2014), Optimization, kinetic and thermodynamic studies for removal of Brilliant Red (X-3B) using Tannin gel. J. Environ. Chem. Eng. 2: 76–83.
[22] Zhong Q. Q., Yue Q. Y., Li Q., Xu X., Gao B. Y., (2010), Preparation characterization of modified wheat residue and its utilization for the anionic dye removal. Desalination. 267: 193–200.             
[23] Kumar P. S., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P., Sivanesan S., (2010),  Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination. 261: 52–60.                                    
[24] Tayebi H. A., Yazdanshenas M. E.,  Rashidi A., Khajavi R. Montazer M., (2015), The isotherms, kinetics and thermodynamics of acid dye on nylon 6 with different amounts of titania and fiber cross sectional shap. J. Eng. Fiber Fabr. 10: 97–108.                                                                                  
[25] Kamal N. A., (2009), Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard. Mater. 165: 52-62.                                                                                                                                           
[26] Tunc O., Tanac H., Aksu Z., (2009), Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. J. Hazard. Mater. 163: 187–198.                                                          
[27] Hameed B. H., (2009), Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161: 753–759.                                
[28] Temkin M. J., Pyzhev V., (2012), Recent modifications to Langmuir isotherms. Acta Physicochim. URSS. 12: 217-225.                                                                                                                      
[29] Li W., Tang Y., Zeng Y., Tong Z., Liang D.,  Cui W., (2012), Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay. Chem. Eng. J. 193-194: 88-95.                                         
[30] Weber W. J., Morris J. C., (1963), Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89: 31–60.                                                                                                    
[31] Martin J. S., Velasco M. G., Heredia J. B., Carvajala J. G., Fernandez J. S., (2010), Novel tannin-based adsorbent in removing cationic dye (Methylene Blue) from aqueous solution. Kinetics and equilibrium studies. J. Hazard. Mater. 174: 9–16.
[32] Sumanjit, Rani S., Mahajan R. K., (2012), Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arabian. J. Chem. (in press), doi: 10.1016/j.arabjc.2012.03.013.