Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

Document Type: Reasearch Paper

Authors

1 Bioinformatics Research Center, Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

2 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.

10.7508/ijnd.2016.04.003

Abstract

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ parameters. The results of optimizations indicated that the formations, polarities, and semiconducting properties of BN G–monolayer are more favorable than other investigated G–monolayers. Moreover, the atomic level CQ parameters also indicated that the atoms at the tips of monolayers have the most activities among other atoms and different properties have been seen for the atoms at different positions of monolayers. Differences of electronegativities are also important for the magnitudes of CQ properties as could be seen by larger values of CQ parameters for B and Al atoms in the BN and AlN G–monolayers in comparison with BP and AlP G–monolayers.

Keywords

Main Subjects


[1] Iijima S., (1991), Helical microtubules of graphitic carbon. Nature. 354: 56-58.

[2] Ghorbanzadeh Ahangari M., Ganji M. D., Montazar F., (2015), Mechanical and electronic properties of carbon nanobuds: First–principles study. Solid State Commun. 203: 58-62.

[3] Shahgaldi S., Hamelin J., (2015) Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon. 94: 705-728.

[4] Geim A. K., Novoselov K. S., (2007), The rise of graphene. Nature Mater. 6: 183-191.

[5] Geim A. K., (2009), Graphene: status and prospects. Science. 324: 1530-1534.

[6] Avouris P., Dimitrakopoulos C., (2012), Graphene: Synthesis and applications. Mater. Today. 15: 86–97.

[7] Sadasivuni K. K., Ponnamma D., Thomas S., Grohens Y., (2014), Evolution from graphite to graphene elastomer composites. Prog. Polym. Sci. 39: 749-780.

[8] Chatterjee S. G., Chatterjee S., Ray A. K., Chakraborty A. K., (2015), Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuat. B. 221: 1170-1181.

[9] Rahimnejad S., Mirzaei M., (2011), Computational studies of planar, tubular and conical forms of silicon nanostructures. Int. J. Nano. Dimens. 1: 257-260.

[10] Prezhdo O. V., Kamat P. V., Schatz G. C., (2011), Virtual issue: graphene and functionalized graphene. J. Phys. Chem. C. 115: 3195-3197.

[11] Mianehrow H., Moghadam M. H. M., Sharif F., Mazinani S., (2015), Graphene–oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application. Int. J. Pharm. 484: 276-282.

[12] Hua Z., Tang Z., Bai X., Zhang J., Yu L., Cheng H., (2015), Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments. Environ. Pollut. 205: 161-169.

[13] Konios D., Stylianakis M. M., Stratakis E., Kymakis E., (2014), Dispersion behavior of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430: 108-112.

[14] Hernández A. G., Kudriavtsev Yu., Gallardo S., Avendaño M., Asomoza R., (2015), Formation of self–organized nano–surfaces on III–V semiconductors by low energy oxygen ion bombardment. Mater. Sci. Semiconduct. Process. 37: 190-198.

[15] Jiang X. F., Weng Q., Wang X. B., Li X., Zhang J., Golberg D., Bando Y., (2015), Recent progresses on fabrications and applications of boron nitride nanomaterials: A Review. J. Mater. Sci. Technol. 31: 589-598.

[16] Emanet M., Şen Ö., Çobandede Z., Çulha M., (2015), Interaction of carbohydrate modified boron nitride nanotubes with living cells. Col. Surf. B. 134: 440-446.

[17] Ahmad P., Khandaker M. U., Khan Z. R., Amin Y. M., (2015), Synthesis of boron nitride nanotubes via chemical vapor deposition: A comprehensive review. RSC Adv. 5: 35116-35137.

[18] Mirzaei M., Mirzaei M., (2011), A computational study of aluminum phosphide nanotubes. Int. J. Quant. Chem. 111: 3851-3855.

[19] Wu Q., Hu Z., Wang X., Lu Y., Chen X., Xu H., Chen Y., (2003), Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125: 10176-10177.

[20] Mirzaei M., (2011), A computational NMR study of boron phosphide nanotubes. Z. Naturforsch. A. 65: 844-848.

[21] Mirzaei M., Yousefi M., Meskinfam M., (2012), Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies. Superlat. Microstruct. 51: 809–813.

[22] Majidi R., (2015), Electronic properties of T graphene–like C–BN sheets: A density functional theory study. Physica E. 74: 371-376.

[23] Mansurov V., Malin T., Galitsyn Yu., Zhuravlev K., (2015), Graphene–like AlN layer formation on (111) Si surface by ammonia molecular beam epitaxy. J. Crys. Growth. 428: 93-97.

[24] Sohbatzadeh Z., Roknabadi M. R., Shahtahmasebi N., Behdani M., (2015), Spin–dependent transport properties of an armchair boron–phosphide nanoribbon embedded between two graphene nanoribbon electrodes. Physica E. 65: 61-67.

[25] Joyce H. J., Gao Q., Tan H. H., Jagadish C., Kim Y., Zou J., Smith L. M., Jackson H. E., Yarrison–Rice J. M., Parkinson P., Johnsto M. B., (2011), III–V semiconductor nanowires for optoelectronic device applications. Prog. Quant. Elec. 35: 23-75.

[26] Saidi I, Mejri H., Baira M., Maaref H., (2015), Electronic and transport properties of AlInN/AlN/GaN high electron mobility transistors. Superlat. Microstruct. 84: 113-125.

[27] Meyer N., Pirson D., Devillers M., Hermans S., (2013), Particle size effects in selective oxidation of lactose with Pd/h–BN catalysts. Appl. Catal. A. 467: 463-473.

[28] Zurek E., Autschbach J., (2004), Density functional calculations of the 13C NMR chemical shifts in (9,0) single–walled carbon nanotubes. J. Am. Chem. Soc. 126: 13079-13088.

[29] Drago R. S, (1992). Physical Methods for Chemists. Second Ed.,  New York: Saunders College Publishing.

[30] Bagheri Z., Mirzaei M., Hadipour N. L., Abolhassani M. R., (2008), Density functional theory study of boron nitride nanotubes: Calculations of the N–14 and B–11 nuclear quadrupole resonance parameters. J. Comput. Theor. Nanosci. 5: 614-618.

[31] Pyykkö P., (2001), Spectroscopic nuclear quadrupole moments. Mol. Phys. 99: 1617-1621.

[32] Frisch M. J., Trucks G. W., Schlegel H. B., (1998), GAUSSIAN 98. Pittsburgh: Gaussian Inc.

[33] Hou S., Shen A., Zhang J., Zhao X., Xue Z., (2004), Ab initio calculations on the open end of single-walled BN nanotubes. Chem. Phys. Lett. 393: 179-183.