Systematic review: Superparamagnetic Iron Oxide nanoparticles as contrast agents in diagnosis of multiple sclerosis

Document Type : Review


1 Department of Chemical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran

2 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Biological and Genetic, Faculty of Medicine, Mazandaran University of Medical Science, Sari, Iran



Several MRI contrast agents (CAs) are used in medical diagnosis that gadolinium (Gd3+) is the most widely used as contrast agents. Unfortunately, its toxicity is due to its inefficiency. In this review, we discuss about the ability of SPIONs in MRI and application in Multiple Sclerosis diagnosis. Superparamagnetic iron oxide nanoparticles (SPIONs) such as magnetite nanoparticles are used as good CAs in recent years because of biocompatibility, low level of toxicity, magnetic properties, simple synthesis and coating to use in medical diagnosis. Uncoated magnetite nanonoparticles are insoluble in water. Hydrophilic coatings result water solubility of nanoparticles and prolonged circulation half-lives of SPION and reduce recognition by RES. SPIONs have an important role in diagnosis of multiple sclerosis (MS) by MRI. SPIONs are MRI contrast agents better than gadolinium because, SPIONs taken up by macrophages but not Gd-nanoparticles.


Main Subjects

[1] Maity D., Zoppellaro G., Sedenkova V., Tucek J., Safarova K., Polakova K., (2012), Surface design of core-shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. Chem Commun. 48: 398–400.
[2] Na H. B., Song I. C., Hyeon T. W., (2009), Inorganic Nanoparticles for MRI Contrast Agents. Adv. Mater.  21: 2133–2148.
[3] Zirrini M., Toosi F. S., Davachi B., Nekooei S., (2015), Natural oral contrast agents for gastrointestinal magnetic resonance imaging. Rev. Clin. Medic. 2: 200-204.
[4] Wang Y. XJ., (2011), Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med. Surg. 1: 35–40.
[5] Caravan P.,  Ellison J. J.,  McMurry T. J., Lauffer R. B., (1999), Gadolinium(III) chelates as MRI contrast agents: structure, dynamics. Chem.Rev. 99: 2293–2352.
[6] Corot C., Warlin D., (2013), Superparamagnetic iron oxide nanoparticles for MRI: Contrast media pharmaceutical company R & D perspective. Nanomed. Nanobiotechnol.  5: 411-422.
[7] Sanjai C., Kothan S., Gonil P., Saesoo S., Sajomsang W,. (2014), Chitosan-triphosphate nanoparticles for encapsulation ofsuper-paramagnetic iron oxide as an MRI contrast agent. Carbohydrate Polymers. 104: 231–237.
[8] Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R. N., (2008), Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem. Rev. 108: 2064–2110
[9] Mahmoudi M.,  Simchi A., Imani M., Milani A. S., Stroeve P., (2008), Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J. Phys. Chem. B. 112: 14470–14481
[10] McAteer M. A., Akhtar A. M.,  Muhlen C. V.,  Choudhury R. P., (2010), An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis. 209: 18-27.
[11] Bulte J. W. M., Kraitchman D. L., (2004), Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17: 484–499.
[12] Vellinga M. M., Oude Engberink R. D., Seewann A.,  Pouwels P. J. W., Wattjes M. P., Van der Pol SMA, (2008), Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain . 131: 800-807.
[13] Ajetunmobi A.,  Prina-Mello A., Volkov Y.,  Corvin A.,  Tropea D.,(2014) Nanotechnologies for the study of the central nervous system, Prog. Neurobio. 123: 18–36.
[14] Shokrollahi H., (2013), Contrast agents for MRI. Mater. Sci.  Eng. C. 33: 4485–4497.
[15] Gaasch, J., (2007), Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem. Res. 32: 1196–1208.
[16] Anzai Y., (2003), Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: Phase III safety and efficacy study. Radiology.  228: 777–788.
[17] Lee N., Hyeon T., (2012), Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41: 2575–2589.
[18] Thurman J. M, Serkova N. J., (2013), Nanosized Contrast Agents to Noninvasively Detect Kidney Inflammation by Magnetic Resonance Imaging. Advances in Chronic Kidney Disease. 20: 488-499.
[19] Stoll and Bendszus., (2010), Experimental applications of SPION-enhanced MRI to the imaging of CNS inflammation.
[20] Dousset V.,  Delalande C.,  Ballarino L., Quesson B., Seilhan D., Coussemacq M., (1999), In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magn. Reson. Med. 41: 329–333.
[21] Xu S., Jordan E., Brocke S., Bulte J. W., Quigley L., Tresser N., Ostuni J. L.,  Yang Y., McFarland H. F.,  Frank J. A., (1998), Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in vivo MRI: early histopathological correlation. J. Neurosci. Res. 52: 549–558.
[22] Compston A., Coles A., (2002), Multiple sclerosis. Lancet. 359: 1221-1231.
[23]  Baratchi S., Kanwar R. K., Khoshmanesh K., Vasu P., Ashok C., Hittu M., (2008), Promises of nanotechnology in drug delivery to brain in neurodegenerative diseases. Curr. Nanosci. 4: 1-11.
[24] Alexander J. S.,  Zivadinov R., Maghzi A. H.,  Ganta V. C.,  Harris M. K., Minagar A., (2011), Multiple sclerosis and cerebral endothelial dysfunction. Mechanisms Pathophysiology. 18: 3–12.
[25] Waterman S. J., Fawal H. L., Snyder A. C., (1994), Lead alters the immunogenicity of two neural proteins: a potential mechanism for the progression of lead-induced neurotoxicity. Environ. Health Perspec. 102: 1052-1057.
[26] Petry K. G., Boiziau C., Dousset V., Brochet B., (2007), Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherapeutics. 4: 434-442.
[27] Bauer J., Ruuls S. R., Huitinga I., Dijkstra C. D.,(1999), The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem  J. 28: 83–97.
[28] Ciccarelli O.,  Barkhof F.,  Bodini B.,  Stefano N. D., Golay X., Nicolay K., (2014), Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. The Lancet Neurology, 13: 807-822.
[29] Dousset V., Gomez C., Petry K. G., Delalande C., Caille J. M., (1999), Dose and scanning delay using USPIO for central nervous system macrophage imaging. Magma. 8: 185–189.
[30] Compston A., McAlpine’s Multiple Sclerosis. 4th ed., Churchill- Livingstone: New York, 2005.
[31] Young I. R., Hall A. S., Pallis C. A., Legg N. J., Bydder G. M., Steiner R. E., (1981), Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet. 2: 1063–1066.
[32] Dilnawaz F., Sahoo S. K., (2015), Therapeutic approaches of magnetic nanoparticles for the central nervous. Drug Discovery Today. 20: 1256-1264.
[33] Chen Y., Liu L., (2012),  Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64: 640–665.
[34] Filippi M., Rocca M. A., De Stefano N., Enzinger C., Fisher E., Horsfield M. A, (2011), Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch. Neurol. 68: 1514-1520.
[35] Kuharik M. A., Edwards M. K., Farlow M. R., Becker G. J., Azzarelli B., Klatte B. E. C., (1988), Gd-enhanced MR imaging of acute and chronic experimental demyelinating lesions.Am. J. Neuroradiol. 9: 643-648.
[36] Waiczies H., Millward J. M., Lepore S., Duarte C. I., Pohlmann A., Niendorf T., Waiczies S., (2012), Identification of cellular infiltrates during early stages of brain inflammation with magnetic resonance microscopy. PLoS One. 7:  e32796.
[37] Tedeschi G., Lavorgna L., Russo P., Prinster A., Dinacci D., Savettieri G., (2005), Brain atrophy and lesion load in a large population of patients with multiple sclero- sis. Neurology.  65: 280–285.
[38] Sahraian M. A., Radue E. W., Haller S., Kappos L., (2010), Black holes in multiple sclerosis: definition, evolution, and clinical correlations. Acta Neurologica Scandinavica. 122: 1–8.
[39] Nathoo N., Yong V. W., Dunn J. F., (2014), Using magnetic resonance imaging in ani- mal models to guide drug development in multiple sclerosis. Multiple Sclerosis. 20: 3–11.
[40] Glickson J. D., Lund-Katz S., Zhou R., Choi H., Chen I. W., Li H., (2008), Lipoprotein nanoplatform for targeted delivery of diagnostic and therapeutic agents. Mol. Imaging. 7: 101–110.
[41] Frias  J. C., Ma Y., Williams K. J., Fayad Z. A., Fisher E. A., (2006), Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett. 6: 2220–2224.
[42] Tourdias T., Roggerone S., Filippi M., Kanagaki M., Rovaris M., Miller D. H., (2012), Iron Oxide–enhanced MR Imaging. Radiology. 264: 225-233.
[43] Park J. Y., Baek M. J., Choi E. S., Woo S., Kim J. H.,  Kim T. J., Jung J. C., Chae K. S., Chang Y., Lee G. H., (2009),  Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent. ACS Nano. 3663–3669.
[44] Bendszus M., Ladewig G., Jestaedt L., Misselwitz B., Solymosi L., Toyka K., (2008), Gadofluorine M enhancement allows more sensitive detection of inflammatory CNS lesions than T2-w imaging: A quantitative MRI study. Brain: A J. Neurology. 131: 2341–2352.
[45] Battistini L., Piccio L., Rossi B., Bach S., Galgani S., Gasperini C., (2003), CD8 + T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: A critical role for P-selectin glycoprotein ligand-1. Blood. 101: 4775–4782
[46] Sipkins D. A., Gijbels K., Tropper F. D., Bednarski M., Li K. C., Steinman L., (2000), ICAM- 1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J. Neuroimmunology. 104: 1-9.
[47] Hu F.,  Zhao Y. S., (2012), Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale.  4: 6235-6243.
[48] Stoll G., Kleinschnitz C., Meuth S. G., Braeuninger S., Ip C. W., Wessig C., (2009), Transient widespread bloodbrain barrier alterations after cerebral photothrombosis as revealed by gadofluorine M enhanced magnetic resonance imaging. Official J.  Int. Soc. Cerebral Blood Flow and Metabolism. 29: 331–341.
[49] Mahmoudi M., Hosseinkhani M., Boutry S., Simchi A., Hosseinkhani H., Journeay W. S., (2011), Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 111: 253-280.
[50] Gupta A. K., Gupta M., (2005), Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials.  26: 3995–4021.
[51] Qiao R., Yang C., Gao M., (2009), Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications.  J. Mater. Chem. 19: 6274–6293.
[52] Sadjadi M. S., Fathi F., Farhadyar N., Zare K., (2011), Synthesis  and characterization of  PVP coated ultra small Fe3O4 Nanoparticle. Res. J. Chem. Environ. 15: 873-875.
[53] Sadjadi M. S., Fathi F., Farhadyar N., Zare K., (2011), Synthesize and Characterization of Multifunctional Silica Coated Magnetic Nanoparticles using Polyvinylpyrrolidone (PVP) as a mediator. J. Nano Resea. 16: 43-48.
[54] Scharlach C., Warmuth C Schellenberger E., (2015), Determination of blood circulation times of superparamagnetic iron oxide nanoparticles by T2* relaxometry using ultrashort echo time (UTE) MRI, Magnetic Resonance Imaging. 1173–1177.
[55] Taupitz M., Schnorr J., Abramjuk C., Wagner S., Pilgrimm H., Hunigen H., (2000), New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J. Magn. Reson. Imaging. 12: 905–911.
[56] Sadjadi M. S., Babaei S. E., (2013), Size and Shape controlled Synthesis and Characterization of Superparamagnetic Iron Oxide Nanoparticles by Co-Precipitation Method. Res. J. Chem. Environ. 17: 60-64.
[57] Wang G., Zhang X., Skallberg A., Liu Y., Hu Z., Mei X., Uvdal K., (2014), One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale. 6: 2953–2963.
[58] Lodhia J., Mandarano G., Ferris N. J., Eu P., Cowell S. F., (2010), Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI.Biomed Imaging Interv. J. 6: e12.
59] Jin R., Lin B., Li D., Ai H., (2014), Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Current Opin. Pharmac. 18: 18–27.
[60] Senéterre E., Taourel P., Bouvier Y., Pradel J., (1996), Detection of hepatic metastases: ferumoxides-enhanced MR imaging versus unenhanced MR imaging and CT during arterial portography. Radiology.  200: 785-792.
[61] Corot C., Robert P., Idée J. M., Port M., (2006), Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58: 1471–1504.
[62] McCullough B., Kolokythas O., Maki J., Green D., (2012), Ferumoxytol in clinical practice: Implications for MRI. J. Magn. Reson. Imaging. 36: 1476-1479.
[63] Varallyay C. G.,  Nesbit E.,  Fu R.,  Gahramanov S.,  Moloney B.,  Earl E, (2013), High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J. Cereb. Blood Flow Metab. 33: 780-786.
[64] Suna C.,  Leeb J. S. H., Zhanga M., (2008), Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Deliv. Rev. 60: 1252-1265.
[65] Yazdani F., Fattahi F., Azizi N., (2016), Synthesis of functionalized magnetite nanoparticles to use asliver targeting MRI contrast agent . J. Magnet. Magnetic Mater.  406: 207–211.
[66] Xie H., Zhu Y., Jiang W., Zhou Q., Yang H., Gu N., Zhang Y., Xu H., Yang X., (2011), Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo. Biomaterials.  32: 495–502.
[67] Sahu S. K., Maiti S., Pramanik A., Ghosh S. K., ( 2012), Panchanan Pramanik, Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent. Carbohydrate. Polymers. 87: 2593– 2604.
[68] Wang Y. M., Cao X., Liu G. H., Hong R. Y., Chen Y. M., Chen X. F., (2011), Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermiad. J. Magnetism and Magnetic Mater. 323: 2953–2959.
[69] Xie S., Zhang B., Wang L., Wang J.,  Li X., Yang G., (2015), Superparamagnetic iron oxide nanoparticles coated with differentpolymers and their MRI contrast effects in the mouse brains. Appl. Surf. Sci. 326: 32–38.
[70] Khurana A., Nejadnik H., Chapelin F., Lenkov O., Gawande R., Lee S., (2013), Ferumoxytol: A new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond). 8: 1969–1983.
[71] Gaglia J. L., Guimaraes A. R., Harisinghani M., (2011), Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J. Clin. Invest. 121: 442–445.
[72] Engberink R., van der Pol S., Walczak P., van der Toorn A., Viergever M., Dijkstra C., (2012), Magnetic resonance imaging of monocytes labeled with ultrasmall superparamagnetic particles of iron oxide using magnetoelectroporation in an animal model of multiple sclerosis. Mol. Imaging. 9: 268–277.
[73] Winer J. L., Kim P. E., Law M., Liu C. Y., Apuzzo M. L. J., (2011), Visualizing the future: Enhancing neuroimaging with nanotechnology. World Neurosurg. 75: 626–637.
[74] Lutz A. M., Seemayer C., Corot C., Gay R. E., Goepfert K., Michel B. A., (2004), Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: Ultrasmall superparamagnetic iron oxide-enhanced MR imaging. Radiology. 233: 149–157.
[75] Bierry G., Jehl F., Boehm N., Robert P., Prévost G., Dietemann J. L., (2008), Macrophage activity in infected areas of an experimental vertebral osteomyelitis model: USPIO-enhanced MR imaging feasibility study. Radiology.  248: 114–123.
[76] Klaus G., Petry C. B., Vincent D., Bruno B., (2007),  Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherap. 4: 434-442.
[77] Dousset V., Brochet B., Deloire M. S., Lagoarde L., Barroso B., Caille J. M., (2006), MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. Am. J. Neuroradiology. 27: 1000–1005.