CO2 adsorption on the surface and open ended of Single wall carbon nanotubes (SWCNTs): A Comparative study

Document Type: Reasearch Paper

Authors

1 Department of Chemistry, Payame Noor University (PNU), P.O. Box,19395-4697, Tehran, Islamic Republic of Iran

2 Chemical Engineering Department, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

3 Textile Engineering Department, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

4 Department of Chemical engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

10.7508/ijnd.2016.03.008

Abstract

Adsorption of CO2 on the surface of Single-wall zigzag (5,0) and armchair (4,4) carbon nanotubes (SWCNTs) were studied through using density functional theory (DFT) calculations. Optimizations of geometric were performed at the B3PW91 level of 6-311++G** method standard basis set using GAUSSIAN 03 package of program [1]. Structural models were optimized and adsorption energies, band gap, charge transfer and dipole momentum were obtained to investigate the nuclear magnetic resonance (NMR) and Nuclear Quadrupole Resonance (NQR) spectroscopy parameters for (CO2-CNTs) model of zigzag (5,0) and armchair (4,4) SWCNTs. Comparison of the results of the zigzag and armchair models with calculated chemical shielding, electric filed gradient tensors at the sites of carbon on the Surface and open ended revealed that CO2 adsorption has a dramatic effect on the electronic structure of SWCNTs and the more adsorption on the surface is about -1.5747eV SWCNT-S (5, 0) nanotube.

Keywords

Main Subjects


[1]  Zhou O., Shimoda H., Gao B.,  Oh S.,  Fleming L., Yue G., (2002),  Materials Science of Carbon Nanotubes: abrication, integration, and properties of macroscopic structures of carbon nanotubes. Acc. Chem. Res. 35: 1045-1053.

[2] Ch E., Kim H., Kim C., Han S., (2006), Ab initio study on the carbon nanotube with various degrees of functionalization. Chem. Phys. Lett. 419: 134-138.

[3] Lee Y. S., Marzari N., (2006), Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. Phys. Rev. Lett. 97: 116801-116804.

[4] Oftadeh M., Gholamian M., Abdallah H. H., (2012), Investigation of optoelectronic properties of N3 dye-sensitized TiO2 nano-crystals by hybrid methods: ONIOM (QM/MM) calculations. Int. Nano Lett. 3: 5-9.

[5]   Zhao  J. J., Chen  Z. F., Zhou  Z.,  Park  H., Schleyer  P. V. R.,  Lu  J. P., (2005),  A density functional study of the 13C NMR chemical shifts in functionalized single-walled carbon nanotubes.  Chem. Phys. Chem. 6: 598-601.

[6] Lu J., Wang D., Nagase S., Ni M., Zhang., Maeda W. X. Y., Wakahara T., Nakahodo T.,  Tsuchiya T., Akasaka T., Gao Z. X., Yu D. P., Ye H. Q.,  Zhou Y. S., Mei W. N. T., (2006), Evolution of the electronic properties of metallic single-walled carbon nanotubes with the degree of CCl2 covalent functionalization. J. Phys. Chem. B.  110: 5655-5658.

[7]  Lin Y., Taylor S., Li H. P., Fernando K. A. S., Qu L. W., Wang W., Gu L. R., Zhou B., Sun Y. P. J., (2004), Preparation characterization and evaluation of immuno carbon nanotubes. Mater. Chem. 14: 527-541.

[8] Tasis D., Tagmatarchis N., Bianco A., Prato M., (2006), Chemistry of carbon nanotubes. Chem. 106: 1105-1136.

[9] Stephan O., Ajayan P. M., Colliex C., Redlich P. H., Lambert J. M., Bernier P., Lefin P., (1994), Doping graphitic and carbon nanotube structures with boron and nitrogen. Science. 266: 1683-1685.

[10] Lantz M. A., Gotsmann B., Durig U. T., Vettiger P., Nakayama Y., Shimizu T., Tokumoto H., (2003), Carbon nanotube tips for thermomechanical data storage. Appl. Phys. Lett. 83: 1266-1274.

[11] Rotkin S. V., Ruda H. E., Shik A., (2003), Universal description of channel conductivity for nanotube and nanowire transistors. Appl. Phys. Lett. 83: 1623-.1625.

[12] Kleinhammes A., MaoS. H., Yang X. J., Tang X. P., Shimoda H., Lu J. P., Zhou O., Wu Y., (2003), Gasadsorption in single-walled carbon nanotubes studied by NMR. Phys. Rev. B. 685: 541-544.

[13] Chopra S., McGuire K., Gothard N., Rao A. M., Pham A., (2003), Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 83: 2280-2282.

[14] Peng S., Cho K., (2000), Chemical control nanotube electronics. Nanotechnology. 11: 57-60.

[15] Li J., Lu Y., Meyyappan M., (2006), Nano chemical sensors with polymer-coated carbon nanotubes. IEEE Sens. J. 6: 1047-1051.

[16] Ghasemi A. S., Ashrafi F., Babanejad S. A., Rahimof M., (2010), A computational NMR study of chemisorption of nitrogen-doped on the surface of single-walled carbon nanotubes. Arch. Appl. Sci. Res. 2: 262-270.

[17] Ghasemi A., Ashrafi F., (2012), Computational NMR study of chemisorbtion of oxygen doped on the Surface of Single-Walled Carbon Nanotubes. Res. J. Appl. Sci. Eng. Tech. 4: 2529-2536.

[18] Zhao J. B., Alper H., Jie P. L., Jian., (2002), The study of a carbon nanotube O2 sensor by field emission treatment. Nanotechnol. 13: 195-200.

[19] Tang X. P., Kleinhammes A., Shimoda H., Fleming L., Bennoune K. Y., Sinha S., Bower C., Zhou  O., Wu Y., (2000), Electronic structures of single-walled carbon nanotubes determined by NMR. Science. 288: 492-494.

[20] Ashrafi F., Babanegad  S. A., Ghasemi  A. S., (2012), Comparison of adsorption of nitrogen and oxygen- molecules on the open endedand surface of SWCNTs: A computational NMR and NQR study. Res. J. Appl. Sci. Eng. Tech. 4: 795-801.

[21] Ghasemi A. S., (2013), A DFT computation for comparison of NQR of O2, N2 and CO over the surface of Single-Walled Carbon Nanotubes. Res. J.  Appl. Sci. Eng. Tech. 101: 1892-1898.

[22] Babanejad S. A., Ashrafi F., Ghasemi A., (2010), Optimization of adsorption of oxygen gas on Carbon nanotubes surface. Arch. Appl. Sci. Res. 2: 438-443.

[23] Ghasemi A. S., Molla M., Ashrafi F., (2012), Study of nuclear quadrupole resonance on CO-Doped Single-Walled Carbon Nanotubes: A DFT computation. Res. J. Appl. Sci. Eng.Tech. 15: 2543-2547

[24] Frisch M. J., (2004),  Gaussian03, Revision D. 01, Gaussian Inc. Walling ford CT.

[25] Ghasemi A. S., Ashrafi F., Babanejad S. A., Rahimof M., (2010), A computational NMR study of chemisorption of Nitrogen-Doped on the surface of Single-Walled Carbon Nanotubes. Arch. Appl. Sci. Res. 2: 262-270.

[26] Parr R. G., Yang W., (1989), Density-Functional Theory of Atoms and Molecules. Oxford University Press.

[27] Perdew J. P., Wang Y., (1992), Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45: 13244-13249.

[28] Wolinski K., Hinton J. F., Pulay P., (1990),  Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 112: 8251-8260.

[29] London F. J., (1937), Quantum theory of interatomic currents in aromatic compounds. Phys. Radium. 8: 397-409.

[30] Ditchfield R., (1974), Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for N.M.R. chem. shifts. Mol. Phys. 27: 789-807.

[31] Ribas Prado F., Giessner-Prettre C., Daudey J. P., Pullman A., Young F., Hinton J. F., Harpool D. J., (1981), Non empirical quantum mechanical calculations of the1 H,13 C,15 N and17 O magnetic shielding constants and of the spin-spin coupling constants in formamide, hydrated formamide and N-`methylformamide. Theor. Chem. Acc. 59: 55-69.

[32] Ghasemi A. S., Molla M., Ashrafi F., (2012), Study of Nuclear Quadrupole Resonance on CO-Doped Single-Walled Carbon Nanotubes: A DFT Computation. Res. J. Appl. Sci., Eng. Tech. 4: 2543-2547.

[33] Purcell E. M., Torrey  H. C., Pound  R. V., (1946), Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 69: 37-38.

[34] Bloch F., Hansen W. W. , Packard M. E., (1946), Nuclear Induction. Phys. Rev. 69: 460-474.

[35] Mirzaei M., Hadipour  N. L., (2006), An Investigation of Hydrogen-Bonding Effects on the Nitrogen and Hydrogen Electric Field Gradient and Chemical Shielding Tensors in the 9-Methyladenine Real Crystalline Structure: A Density Functional Theory Study. J. Phys. Chem. A.  110: 4833-4841.

[36] Soltani A., Baei M. T., Ghasemi A. S., Lemeski E. T., Amirabadi K. H., (2014), Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices. Microstruct. 75: 564–575.

[37] Marian C. M., Gastreich M., (2001), Structure-property relationships in boron nitrides: The 15-N and 11-B chemical shifts. Solid State Nucl. Mag. 19: 29-44.

[38] Ashrafi F., Ghasemi A. S., Babanejad S. A.,Rahimof M., (2010), Optimization of carbon nanotubes for nitrogen gas adsorption. Res. J. Appl. Sci. Eng. Tech. 2: 547-551.

[39] Ghasemi A. S., Molla M., Mostashregh M., (2013), Adsorptions Gas CO2 on the Surface and Open-Ended Single-Walled Carbon Nanotube: A NQR Study. Int. J. Chem.Tech. Res. 5: 1623-1629.

[40] Ghasemi A. S., Soltani A., Molla M., (2015), A DFT study on the NMR and NQR chemical shifts of molecules confined in boron nitride nanotubes. Am. J. Sci. Tech. 2: 2375-3846.