Role of growth temperature in CVD synthesis of Carbon nanotubes from Ni-Co bimetallic catalysts

Document Type: Reasearch Paper

Authors

1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran

10.7508/ijnd.2016.03.007

Abstract

The effect of temperature variation on the growth of Carbon Nanotubes (CNTs) using Thermal Chemical Vapor Deposition (TCVD) is presented. Nickel and Cobalt (Ni-Co) thin films on Silicon (Si) substrates were used as catalysts in TCVD technique. Acetylene gas was used in CNTs growth process at the controlled temperature ranges from 850-1000 ̊ C. Catalysts and CNTs characterization was carried out using Atomic Force Microscopy (AFM), Energy Dispersive X-ray (EDX), Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy. It was found that the CNTs diameters increased with the temperature. The CNTs diameters were continually increased from 70 nm to 180 nm in the temperature range. In addition, the degree of crystallinity of the grown CNTs decreased.

Keywords

Main Subjects


[1] Akbarzadeh Pasha M., Poursalehi R., Vesaghi M. A., Shafiekhani A., (2010), The effect of temperature on TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation. Physica B. 405: 3468-3474.

[2] Akbarzadeh Pasha M, Ranjbar M., Vesaghi M. A., Shafiekhani A., (2010), The evolution of catalyst layer morphology and sub-surface growth of CNTs over the hot filament grown Fe-Cr thin films. Appl. Surf. Sci. 257: 1511-1515.

[3] Kuo D. H., Su M. Y., (2007), The effects of hydrogen and temperature on the growth and microstructure of carbon nanotubes obtained by the Fe(CO)5 gas-phase-catalytic chemical vapor deposition. Surf. Coat. Technol. 201: 9172-9178.

[4] Feng J. M., Li Y. L., Hou F., Zhong X. H., (2008), Controlled growth of high quality bamboo carbon nanotube arrays by the double injection chemical vapor deposition process. Mater. Sci. Eng. A. 473: 238-243.

[5] Lee O., Jung J., Doo S., Kim S., Noh T., Kim K., Lim Y., (2010), Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Met. Mater. Int. 16: 663-667.

[6] Kumar M., Ando Y., (2010), Chemica vapor deposition of carbon nanotubes: A review growth mechanism and mass production. J. Nanosc. Nanotechnol. 10: 3739-3758.

[7] Gwan Hahm M., Kwon Y. K., Busnaina A., Jung Y. J., (2010), Structure Controlled Synthesis of Vertically Aligned Carbon Nanotubes Using Thermal Chemical Vapor Deposition Process. J Heat Transfer. 133: 031001-031004.

[8] Moisala A., Nasibulin A. G., Kauppinen E. I., (2003), The role of metal nono particels in the catalytic production of single-walled carbon nanotubes: A review. J. Phys. Condens.  Matter. 15: S3011- S3035.

[9] Zhou W., Han Z., Wang J., Zhang Y., Jin Z., Sun X., Zhang Y., Yan C., Li Y., (2006), Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6: 2987–2990.

[10] Bhaviripudi S., Mile E., Steiner III S. A., Zare A. T., Dresselhaus M. S., Belcher A. M., Kong J., (2007), CVD synthesis of single-walled carbon nanotubes from gold nanoparticles catalysts. J. Am. Chem. Soc. 129: 1516–1517.

[11] Takagi D., Homma Y., Hibino H., Suzuki S., Kobayashi Y., (2006), Single-walled carbon nanotube growth from highly activated metal catalysts. Nano Lett. 6: 2642–2645.

[12] Yuan D., Ding L., Chu H., Feng Y., Mcnicholas T. P., Liu J., (2008), Horizontally aligned single- walled carbon nanotube on quartz from  a large variety of metal catalysts. Nano Lett. 8: 2576–2579.

[13] Liu B., Ren W., Gao L. , Li S., Liu Q. , Jiang C., Cheng H.-M., (2008), Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J. Phys. Chem. C. 112: 19231–19235.

[14] Hofmann S. , Blume R., Wirth C. T., Cantoro M., Sharma R., Ducati C. , Hävecker M., Zafeiratos S., Schnoerch P., Oestereich A., Teschner D., Albrecht M., Knop- Gericke A., Schlögl R., Robertson J., (2009), State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C. 113: 1648–1656.

[15] Nunez J. D., Maser W. K., Mayoral M. C., Andrés J. M., Benito A. M., (2011), Platelet-like catalyst design for high yield production of multi-walled carbon nanotubes by catalytic chemical vapor deposition. Carbon. 49: 2483–2491.

[16] Zhou W., Ding L., Liu J., (2009), Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. 2: 593-598.

[17] Cheung C. L., Kurtz A., Park H., Lieber C. M., (2002), Diameter-controlled synthesis of carbon nanotubes. J Phys. Chem. B. 106: 2429–2433.

[18] Kondo D., Sato S., Awano Y., (2006), Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles. Chem. Phys. Lett. 422: 481–487.

[19] Chiang W. H., Sankaran R. M., (2008), In flight dimensional tunning of metal nanoparticles by microplasma synthesis for selective production of diameter-controlled carbon nanotubes. J. Phys. Chem. C. 112: 17920–17925.

[20] Rider A. E., Levchenko I., Chan K. K. F., Tam E., Ostrikov K., (2008), Size- selected Ni catalyst islands for single-walled carbon nanotube arrays. J. Nanopart. Res. 10: 249–254.

[21] Bachilo S. M., Balzano L., Herrera J. E., Pompeo F., Resasco D. E., Weisman R. B., (2003), Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125: 11186–11187.

[22] Chiang W. H., Sankaran R. M., (2009), Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles. Nat. Mater. 8: 882–886.

[23] He M., Chernov A. I., Fedotov P. V., Obraztsova E. D., Sainio J., Rikkinen E., (2010), Predominant (6, 5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 132: 13994–13996.

[24] De Oliveira R. R. L., Albuquerque D. A. C., Cruz T. G. S., Yamaji F. M., Leite F. L., (2012), Atomic Force Microscopy-Imaging, Measuring and Manipulating surfaces at the atomic scale. In V. Bellitto (Ed.), InTech.

[25] Ghodselahi T., Vesaghi M. A., Shafiekhani A., (2009), Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory. J. Phys. D: Appl. Phys. 42: 1-6.

[26] Tripathi N., Mishra P., Harsh, Islam S. S., (2014), Effect of growth temperature on the diameter distribution and yield of carbon nanotubes, Physics of Semiconductor devices. Environmental Science and Engineering  (645-650). Springer.

[27] Yazyev O. V., Pasquarello A., (2008), Effect of metal elements in catalytic growth of carbon nanotubes. Phys. Rev. Lett. 100: 156102-156106.

[28] Deck C. P., Vecchio K., (2006), Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon. 44: 267–275.

[29] Lahiri I., Lahiri D., Jin S., Agarwal A., Choi w., (2011), Controlling the orientation of terraced nanoscale “Ribbons” of a poly (thiophene) semiconductor. ACS Nano. 3: 780-787.

[30] Nitze F., Andersson B. M., Wagberg T., (2009), Ammonia assisted growth of multiwalled carbon nanotubes. Phys. Status Solidi B. 11- 12: 2440-2443.