[Co(NH3)5(NO3)](NO3)2 as an energetic coordination precursor for the preparation of Co3O4 nanoparticles at low temperature

Document Type : Reasearch Paper


Department of Chemistry, Lorestan University, Khoramabad 68135-465, Iran



In this paper, an energetic coordination compound namely pentamminenitratocobalt(III) nitrate, [Co(NH3)5(NO3)](NO3)2, was used as a new precursor for the preparation of Co3O4 nanoparticles. The results showed that the complex is easily decomposed into the Co3O4 nanoparticles at low temperature (200 °C) without employing a surfactant or solvent and any complicated equipment. The product was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). Optical and magnetic properties of the product were studied by UV-visible (UV-vis) spectroscopy and a vibrating sample magnetometer (VSM), respectively. FT-IR, XRD and EDS analyses confirmed the formation of highly pure spinel-type Co3O4 phase with cubic structure. TEM images showed that the Co3O4 nanoparticles are approximately in the range of 10 to 24 nm with a mean size of around 17 nm. The optical spectrum of the Co3O4 nanoparticles revealed the presence of two band gaps at 3.45 and 2.20 eV which are blue-shifted relative to reported values for the bulk sample. The magnetic measurement of the product showed a weak ferromagnetic order at room temperature.


Main Subjects

[1] Klabunde K. J., Richards R. M., (2012), Nanoscale Materials in Chemistry. 2nd edn. Wiley, New York.
[2] Mate V. R., Shirai M., Rode, C. V., (2013), Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catal. Commun. 33: 66-69.
[3] Warang T., Patel N., Santini A., Bazzanella N., Kale A., Miotello, A, (2012), Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Appl. Catal. A: Gen. 423-424: 21-27.
[4] Casas-Cabanas M., Binotto G., Larcher D., Lecup A., Giordani V., Tarascon, J. M., (2009), Defect chemistry and catalytic activity of nanosized. Co3O4. Chem. Mater. 21: 1939-1947.
[5] Askarinejad A., Bagherzadeh M., Morsali A, (2010), Catalytic performance of Mn3O4 and Co3O4 nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl. Surf. Sci. 256: 6678-6682.
[6] Lou X. W., Deng D., Lee J. Y., Feng J., Archer L. A., (2008), Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20: 258-262.
[7] Chou S. L., Wang J. Z., Liu H. K., Dou, S. X., (2008), Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J. Power. Sourc. 182: 359-364.
[8] Li Y. G., Tan B., Wu Y. Y., (2008), Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capacity. Nano Lett. 8: 265-270.
[9] Li W. Y., Xu L. N., Chen J., (2005), Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15: 851-857.
[10] Sugimoto T., Matijevic E., (1979), Colloidal cobalt hydrous oxides, preparation and properties of monodispersed. Co3O4. J. Inorg. Nucl. Chem. 41: 165-172.
[11] Makhlouf S. A., (2002), Magnetic properties of Co3O4 nanoparticles. J. Magn. Magn. Mater. 246: 184-190.
[12] Sun L., Li H., Ren L., Hu C., (2009), Synthesis of Co3O4 nanostructures using a solvothermal approach. Solid State Sci. 11: 108-112.
[13] Chen Y., Zhang Y., Fu S., (2007), Synthesis and characterization of Co3O4 hollow spheres. Mater. Lett. 61: 701-705.
[14] Lai T., Lai Y., Lee C., Shu Y., Wang C., (2008), Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal. Today. 131: 105-110.
[15] Wang W. W., Zhu, Y. J., (2005), Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods. Mater. Res. Bull. 40: 1929-1935.
[16] Li L., Chu Y., Liu Y., Song J. L., Wang D., Du X. W., (2008), A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 62: 1507-1510.
[17] Du J., Chai L., Wang G., Li K., Qian Y., (2008), Controlled synthesis of one-dimensional single-crystal Co3O4 nanowires.  Aust.  J. Chem. 61: 153-158.
[18] Wang R. M., Liu C. M., Zhang H. Z., Chen C. P., Guo L., Xu H. B., Yang S. H., (2004), Porous nanotubes of Co3O4: synthesis, characterization and magnetic properties. Appl. Phys. Lett. 85: 2080-2082.
[19] Li Y., Zhao J., Dan Y., Ma D., Zhao Y., Hou S., Lin H., Wang Z., (2011), Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem. Eng. J. 166: 428-434.
[20] Sun H., Ahmad M., Zhu J., (2013), Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithium-ion battery electrode. Electrochim. Acta. 89: 199-205.
[21] Ren M., Yuan S., Su L., Zhou Z., (2012), Chrysanthemum-like Co3O4 architectures: Hydrothermal synthesis and lithium storage performances. Solid State Sci. 14: 451-455.
[22] Yang L. X., Zhu Y. J., Li L., Zhang L., Tong H., Wang W. W., (2006), A facile hydrothermal route to flower-like cobalt hydroxide and oxide. Eur. J. Inorg. Chem. 23: 4787-4792.
[23] Jiu J., Ge Y., Li X., Nie L., (2002), Preparation of Co3O4 nanoparticles by a polymer combustion route. Mater. Lett. 54: 260-263.
[24] Gu F., Li C., Hu Y., Zhang L., (2007), Synthesis and optical characterization of Co3O4 nanocrystals via a facile combustion method. J. Cryst. Growth. 304: 369-373.
[25] Gardey-Merino M. C., Palermo M., Belda R., Fernández de Rapp M. E., Lascalea G. E., Vázquez P. G., (2012 ), Combustion synthesis of Co3O4 nanoparticles: fuel ratio effect on the physical properties of the resulting powders. Proced. Mater. Sci. 1: 588-593.
[26] Ai L. H., Jiang J., (2009), Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method. Powder Tech. 195: 11-14.
[27] Li L., Ren J., (2006), Rapid preparation of spinel Co3O4 nanocrystals in aqueous phase by microwave irradiation. Mater. Res. Bull. 41: 2286-2290.
[28] Bhatt A. S., Bhat D. K., Tai C. W., Santosh M. S., (2011), Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles. Mater. Chem. Phys. 125: 347-350.
[29] Ma J., Zhang S., Liu W., Zhao Y., (2010), Facile preparation of Co3O4 nanocrystals via a solvothermal process directly from common Co2O3 powder. J. Alloys Compd. 490: 647-651.
[30] Lester E., Aksomaityte G., Li J., Gomez S., Gonzalez-Gonzalez J., Poliakoff, M., (2012), Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Prog. Cryst. Growth Charact. Mater. 58: 3-13.
[31] Baydi M. E., Poillerat G., Rehspringer J. L., Gautier J. L., Koenig J. F., Chartier P., (1994), A sol–gel route for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J. Solid State Chem. 109: 281-288.
[32] Kim D. Y., Ju S. H., Koo H. Y., Hong S. K., Kangf Y. C., (2006), Synthesis of nanosized Co3O4 particles by spray pyrolysis. J. Alloys Compd. 417: 254-258.
[33] Kumar R. V., Diamant Y., Gedanken A., (2000), Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12: 2301-2305.
[34] Wang X., Chen X. Y., Gao L. S., Zheng H. G., Zhang Z., Qian Y. T., (2004), One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B. 108: 16401-16404.
[35] Fan S., Liu X., Li Y., Yan E., Wang C., Liu J., Zhang Y., (2013), Non-aqueous synthesis of crystalline Co3O4 nanoparticles for lithium-ion batteries. Mater. Lett. 91: 291-293.
[36] Jiang J., Li L., (2007), Synthesis of sphere-like Co3O4 nanocrystals via a simple polyol route. Mater. Lett. 61: 4894-4896.
[37] Zou D., Xu C, Luo H., Wang L., Ying T., (2008),  Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett. 62: 1976-1978.
[38] Traversa E., Sakamoto M., Sadaoka Y., (1998), A chemical route for the preparation of nanosized rare earth Perovskite-type oxides for electroceramic applications. Part. Sci. Technol. 16: 185-214.
[39] M. Y. Masoomi, A. Morsali, (2012), Applications of metal-organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 256: 2921-2943.
[40] Mohandes F., Davar F., Salavati-Niasari M., (2010), Preparation of Co3O4 nanoparticles by nonhydrolytic thermolysis of [Co(Pht)(H2O)]n polymers. J. Magn. Magn. Mater. 322: 872-877.
[41] Ren L., Wang P., Han Y., Hu C., Wei B., (2009), Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles. Mater. Phys. Lett. 476: 78-83.
[42] Thangavelu K., Parameswari K., Kuppusamy K., Haldorai Y., (2011), A simple and facile method to synthesize Co3O4 nanoparticles from metal benzoate dihydrazinate complex as a precursor. Mater. Lett. 65: 1482-1484.
[43] Salavati-Niasari M., Khansari A., Davar F., (2009), Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorg. Chim. Acta. 362: 4937-4942.
[44] Farhadi S., Pourzare K., (2012), Simple and low-temperature preparation of Co3O4 sphere-like nanoparticles via solid-state thermolysis of the [Co(NH3)6](NO3)3 complex. Mater. Res. Bull. 47: 1550-1556.
[45] Farhadi S., K. Pourzare, (2014), Synthesis and characterization of Co3O4 nanoplates by simple thermolysis of the [Co(NH3)6]2(C2O4)3·4H2O complex. Polyhedron. 67: 104-110.
[46] Farhadi S., Roostaei-Zaniyani Z., (2011), Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II) nitrate, [Ni(NH3)6](NO3)2, complex. Polyhedron. 30: 1244-1249.
[47] Bailar J. C., (1953), Acidopentamminecobalt (III) salts.  Inorg. Synth. 4: 171-174.
[48] Kristóf J., Horváth A., Szabó P., (1990), Simultaneous thermoanalytical investigations on the rapid decomposition of pentamminecobalt (III) complexes. J. therm. Analys. 36: 1191-1204.
[49] Nakamoto K., (2009), Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry, 6th edn. Wiley, New York.
[50] Pejova B., Isahi A., Najdoski M., (2001), Fabrication and characterization of nanocrystalline cobalt oxide thin films. Mater. Res. Bull. 36: 161-170.
[51] Klug H. P., Alexander L. E., (1964), X-ray Diffraction Procedures. 2nd edn. Wiley, New York.
[52] He T., Chen D. R., Jiao X. L., Wang Y. L., Duan Y. Z., (2005),  Solubility-controlled synthesis of high-quality Co3O4 nanocrystals. Chem. Mater. 17: 4023-4030.
[53] Gulino A., Dapporto P., Rossi P., Fragala I., (2003), A novel self-liquid MOCVD precursor for Co3O4 thin films. Chem. Mater. 15: 3748-3752.
[54] Ichiyanagi Y., Kimishima Y., Yamada S., (2004), Magnetic study on Co3O4 nanoparticles. J. Magn. Magn. Mater. 272-276: e1245-e1246.
[55] Kodama R. H., Makhlouf S. A., Berkowitz, A. E., (1997), Growth mechanism and magnon excitation in NiO nanowalls. Phys. Rev. Lett. 79: 1393-1396.
[56] Ozkaya T., Baykal A., Toprak M. S., Koseoglu Y, Durmus Z., (2009), Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. J. Magn. Magn. Mater. 321: 2145-2149.