Two new Cu(II) and Zn(II) Schiff base complexes: Synthesis, characterization and their biological activity

Document Type: Reasearch Paper


1 Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.

2 Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.



New two nano- sized Schiff base complexes [M(L)], where L= 2, 2'-((1E, 1E')-(1, 2 phenylen bis (azanylylidene)) bis (methanylylidene)) bis (4-bromo phenolato) and M=Cu or Zn, (a, b complexes) were synthesized by ultrasonic irradiation. These complexes were characterized by elemental analysis, molar conductivity, FT-IR, fluorescence emission, 1H NMR, field emission scanning electron spectroscopy (FESEM) and UV-Vis spectroscopy. The UV-Vis spectroscopic data and fluorescence emission bands of these nano-sized Schiff base complexes show a shift in comparison with the bulk sample analogue, due to the reduction in particle size to nano scale. In vitro antimicrobial activities of the title compounds against some Gram-positive (Staphylococcus aureus, Micrococcus luteus, Bacillus cereus, Eterococcus faecalis) and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella sp, Pscudomonas sp) and fungus strain (Candida albicans) were investigated and compared with each other. It was found that Cu (II) complex showed higher ant


Main Subjects

[1] Karunakaran C., Dhanalakshmi R., (2009), Selectivity in photo catalysis by particulate Semiconductors.Cent. Europ. J. Chem. 7: 134-138.
[2] Rayati S.,  Zakavi S.,  Koliaei  M ., Wojtczak A., Kozakiewicz A., (2010), Electron-rich salen-type Schiff base complexes of Cu(II) as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide: A comparison with electron-deficient ones. Inorg. Chem. Commun. 13: 203–207.
[3] Jeslin Kanaga Inba P.,  Annaraj B., Thalamuthu S.,  Neelakantan M. A., (2013), Salen, reduced salen and N-alkylated salen type compounds: spectral characterization, theoretical investigation and biological studies. Spectrochim. Acta: Part A. 104: 300–309.
[4] Patterson A. E.,  Miller J. J.,  Miles B. A.,  Stewart E. L., Melanson J. M. E. J., Vogels C. M.,  Cockshutt A. M.,  Decken A., Jr P. M., Westcott S. A., (2014), Synthesis, characterization and  anticancer properties of (salicylaldiminato) platinum(II) complexes. Inorg. Chim. Acta. 415: 88–94.
[5] Emadi D., Yaftian M. R., Rayati S., (2007), N, N -Bis(1-hydroxy-2 - acetonaphthone) propylenediamine: Synthesis, Extractive Properties, and use as an ionophore in a Cu(II)-selective potentiometric sensor. Turk. J. Chem. 31: 423–433.
[6] Ebrahimipour S. Y., Sheikhshoaie I., Crochet A., Khaleghi M., Fromm K. M., (2014), A new mixed-ligand copper(II) complex of (E)-N2 -(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities. J. Molec.  Str.  1072: 267-276.
[7] Routier S.,Vezin H., Lamour E., Bernier J. L.,   Catteau J. P., Bailly C., (1999), DNA cleavage by hydroxy-salicylidene-ethylendiamine-iron complexes. Nucl. Acids Res. 27: 4160–4166.
[8]Mohamed G. G., Moma, M. M., Hindy A. M., (2006), Metal complexes of Schiff bases:         preparation, characterization, and  biological activity. Turk. J. Chem. 30: 361– 382.
[9] Karekal M. R., Bennikallu Hire Mathad M., (2013), Synthesis, spectroscopic characterization, and biological screening of binuclear transition metal complexes of bicompartmental Schiff bases containing indole and resorcinol moieties. Turk. J.  Chem. 37: 775–795.
[10] Xiong R., Song B., Zuo J., You X., (1996), Syntheses and properties of complexes of Cu (II), Ni (II) and Zn (II) with N,N2 -trimethylene bis(salicylaldehyde imine). Crystal structure of Cu (Sal2tn). Polyhedron 15: 903–907.
[11] Ana C. D., Midões Pedro E., Aranha  Mirian P., Dos Santos Érica T., Sandra R., Regina H., de A. Santos Edward R.,  Dockal, (2008), Synthesis, characterization, crystal structure and catalytic property of [Cu(SalAHE )2] (SalAHE = salicylaldehydeimine-1-hydroxyethane) complex for the oxidation of 3,5-di-tert-butylcatechol.  Polyhedron. 27: 59-64.
[12] Sheldon R. A., Kochi J. K., (1981), Metal-Catalyzed Oxidation of Organic. Compounds.      Academic Press, New York.
[13] Solomon E. I., Chen P., Metz M., Lee S. K., Palmer A. E, (2001), Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. Angew. Chem., Int. Ed. Engl. 40: 4570–4590.
[14] Abolmaali B., Taylor H. V., Weser U., (1998), Evolutionary aspects of copper binding centers in copper proteins. Str. Bond. 91: 91–190.
[15] Danyi W., Ning L., Gui L., Kemin Y., (2006),  Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base.  Science in China: Series B. 49: 225-229.
[16] Kawamoto T., Nishiwaki M., Tsunekawa Y., Nozaki K., Konno T., (2008), Synthesis and Characterization of Luminescent Zinc (II) and Cadmium (II) Complexes with N, S-Chelating Schiff Base Ligands. Inorg. Chem. 47: 3095–3104.   
[17] Jorgansen K. A., (1989), Transition metal catalyzed epoxiddations. Chem. Rev. 89: 431-458.
[18] Holm R. H., (1987), Metal-centered oxygen atom transfer reactions. Chem. Rev. 87: 1401 –1449.
[19] Temel H., Hosgoren H. Temel H., Hosgoren H., (2002), New Cu(II), Mn(III), Ni(II) and Zn(II) complexes with chiral quadridentate Schiff  base. Trans. Met. Chem. 27: 609-612.   
[20] Habibi M. H., Mardani M., (2015), Effect of annealing
temperature on optical properties of binary zinc, tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations. Spectrochim. Acta: Part A. 137: 67–270.
[21] Kaspar J., Graczyk-Zajac M.,  Lauterbach S., Kleebe H. J., Riedel R., (2014), Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: Considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties.  J. Power Sourc. 262: 164–172.
[22] Kabak M., Elmali A., Elerman Y., Durlu T. N., (2000), Conformational study and struture of Bis-N,N’-p-bromo-salicylideneamine-1, 2-Diaminobenzene. J. Mol. Struct. 553: 187–192.
[23] Wang G., Chang J. C., (1994), Synthesis and Characterization of Amino Acid Schiff Base Complexes of Nickel (II). Synth. React. Inorg. Met. Org. Chem. 24: 1091–1097.
[24] Abed-Elzaher M. M., (2001), Spectroscopic characterization of some tetradentate Schiff bases and their complexes with nickel, copper and zinc. Chin. J. Chem. Soc. 48: 153–158.
[25] Ghose B. N., Lasisi K. M., (1986), Schiff Base Complexes of Titanium: Reaction of Titanium (IV) Tetrachloride with Dibasic Tetradentate Schiff Bases. Synth. React. Inorg. Met. Org. Chem. 16: 1121–1125.
[26] Lever A. B. P., (1984) Inorganic Electronic Spectroscopy; Elsevier.
[27] Mostafa M. M., El-Hammid A.,  Shallaby M., El-Asmy A. A., (1981), Copper (II), cobalt (II), nickel (II) and mercury (II) complexes of 1, 4-diphenylthiosemicarbazide. Trans.  Met. Chem. 6: 303–305.
[28] Bhowmik P., Drew M. G. B., Chattopadhyay S., (2011), Synthesis and characterization of nickel (II) and copper (II) complexes with tetradentate Schiff base ligands. Inorg. Chim. Acta. 366: 62–67.
[29] Irshad S., Mahmood M., Perveen F., (2012), In vitro antibacterial activities of three medicinal plants using agar well diffusion method. Res. J. Biolog. 2: 1-8.
[30] Cinarli A., Gurbuz D., Tavman A., Birteksoz A. S., (2011), Synthesis, spectral characterization and antimicrobial activity of some Schiff bases 4-chloro-2-aminophenol. Bull. Chem. Soc. Ethiop. 25: 407-417.
[31] Kubota H., Senda  S., Nomura N., Tokuda H., Uchiyama H., (2008), Biofilm Formation by Lactic Acid Bacteria and Resistance to Environmental Stress. J. Biosci. Bioeng. 106: 381- 386.  
[32] Ebrahimipour S. Y., Sheikhshoaie I., Crochet A., Khaleghi M., Fromm K.M., (2014), A new mixed-ligand copper(II) complex of (E)-N2 -(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities. J. Molec. Struc. 1072: 267–276.