Nano TiO2@KSF as a high-efficient catalyst for solvent-free synthesis of Biscoumarin derivatives

Document Type : Short Communication


1 Department of Organic Chemistry, University of Guilan, Rasht, Iran.

2 Department of Organic Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.



An efficient, simple and convenient route is described for the synthesis of biscoumarin (3,3'-(arylmethylene) bis (4-hydroxy-2H-chromen-2-one)) by using of recyclable catalyst TiO2@KSF. In this Method, we synthesis biscoumarin derivatives via 3multi-component reactions (3MCRs) of two equivalent 4-hydroxycoumarin with one equivalent of aromatic aldehydes using 20 mg nano TiO2@KSF as homogeneous catalyst under solvent-free conditions at 60 °C for the required reaction times (8–15 min). The advantages of this protocol in synthesis of biscoumarin derivatives as an solvent-free condition, using rather inexpensive catalyst, commercially available starting materials, reusability of TiO2@KSF, simple work-up due to solid phase, high yields and short reaction times. The catalyst can be recovered and reused for four times without much loss in reactivity. The structure of all biscoumarin derivatives was confirmed by FT-IR, 1H NMR spectra and compared with reliable references.


Main Subjects

[1] Takemura T., Kamo T., Sakuno E., Hiradate S., Fujii Y., (2013), Discovery of coumarin as the predominant allelochemical in gliricidiasepium. J. Tropical Forest Science. 25: 268-272.
[2] Xu X., Hu X., Wang J., (2013), A new synthetic protocol for coumarinamino acid. Beilstein J. Org. Chem. 9: 254-259.
[3] El Gamal N. G., El Shamy A. R., (2014), Allelopathicimpact of some antioxidants on fusariumsolanica using root rot on fababean (Viciafabae). J. Agricultural Technol. 10: 951-961.
[4] Talhi O., Schnekenburger M., Panning J., Pinto D. G. C., Fernandes J. A., Almeida Paz F. A., Jacob C., Diederich M., Silva A. M. S., (2014), Bis(4-hydroxy-2H-chromen-2-one): synthesis and effects on leukemic cell lines proliferation and nf-™bregulation. Bioorg. Med. Chem. 22: 3008-3015.
[5] Hamdi N., Puerta M. C., Valerga P., (2008), Synthesis, structure, antimicrobial and antioxidant investigations of dicoumarol and related compounds. Eur. J. Med. Chem. 43: 2541-2548.
[6] Petnapapun K., Chavasiri W., Sompornpisut P., (2013), Structure-activity relationships of 3, 3'-phenylmethylene-bis-4-hydroxycoumarins: selective and potent inhibitors of gram-positive bacteria. Hin. Pub. Cor. 56: 11-15.
[7] Kostova I., Manolov I., Momekov G., (2004), Cytotoxic activity of new neodymium (iii) complexes of bis-coumarins. Eur. J. Med. Chem. 39: 765–775.
[8] Manolov I., Raleva S., GenovaP., Savov A., Froloshka L., Dundarova D., Argirova R., (2006), Antihuman immunodeficiency virus type 1 (HIV-1) activity of rare earth metal complexes of 4-hydroxycoumarins in cell culture. Bioinorg. Chem. Applic. Article ID. 71938. 1-7.
[9] Khurana J. M., VIJ K., (2012), Nickel nanoparticles: A highly efficient catalyst for one-pot synthesis of tetraketones and biscoumarins. J. Chem. Sci. 124: 907-912.
[10] Pawar B., Shinde V., Chaskar A., (2013), N-dodecylbenzenesulfonic acid (DBSA) as a novel bronsted acid catalyst for the synthesis of bis(indolyl)methanes and bis(4- hydroxyl coumarin-3-yl)methanes in water. Green and Sustainable Chem. 3: 56-60.
[11] Karimian R., Piri F., Safari A. A., Davarpanah S. J., (2013), One-pot and chemoselective synthesis of bis(4-hydroxycoumarin) derivatives catalyzed by nanosilica chloride. J. Nanostruc. Chem. 3: 52-57.
[12] KhuranaJ. M., Kumar S., (2009), Tetrabutylammoniumbromide (TBAB): aneutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett. 50: 4125-4127.
[13] Tavakoli-Hoseini N., Heravi M. M., Bamoharram F. F., Davoodnia A., Ghassemzadeh M., (2011), An unexpected tetracyclic product isolated during the synthesis of biscoumarins catalyzed by [MIM(CH2)4SO3H][HSO4]: characterization and x-ray crystal structure of 7-(2-hydroxy-4-oxo-4H-chromen-3-yl)-6H,7H-chromeno[4,3-b]chromen-6-one. J. Molecular Liquids. 163: 122-127.
[14] Zareai Z., Khoobi M., Ramazani A., Foroumadi A., Souldozi A., Slepokura K., Lis T., Shafiee A., (2012), Synthesis of functionalized furo[3,2-c]coumarins via a one-pot oxidative pseudo three component reaction in poly(ethylene glycol). Tetrahedron. 68: 6721-6726.
[15] Singh P., Kumar P., Katyal A., Kalra R., Dass S. K., Prakash S., Chandra R., (2010), Phosphotungstic acid: an efficient catalyst for the aqueous phase synthesis of bis-(4-hydroxycoumarin-3-yl)methanes. Catal. Lett. 134: 303-308.
[16] Karimi-Jaberi Z., Nazarifar M. R., Pooladian B., (2012), Tris(hydrogensulfato)boron as a solid heterogeneous catalyst for the rapid synthesis of a,a’-benzylidenebis(4-hydroxycoumarin) derivatives. Chin. Chem. Lett. 23: 781-784-787.
[17] Karmakar B., Nayak A., Banerji J., (2012), Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols a green approach. Tetrahedron Lett. 53: 4343-4346.
[18] Qi X., Xue M. W., Sun X. J., Zhi Y., Zhou J. F., (2014), Microwave-assisted, methanesulfonicacid-catalyzed synthesis of 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones). Res. Chem. Intermed. 40: 1187-1192.
[19] Mehrabi H., Abusaidi H., (2010), Synthesis of biscoumarin and 3,4-dihydropyrano-[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J. Iran. Chem. Soc. 7: 890-894.
[20] Sedighi M., Montazeri N., (2015), Synthesis of biscoumarin derivatives as biological compounds using cellulose sulfonic acid. Adv. Studies in Biology. 7: 89-95.
[21] Tabatabaeian K., Zanjanchi M. A., Mamaghani M., Dadashi A., (2015), Ultrasonic-assisted ruthenium-catalyzed one-pot synthesis of biscoumarins. J. Adv. Chem. 11: 3532-3539.
[22] Mahmoodi N. O., Kiyani H., Tabatabaeian K., Zanjanchi M. A., (2009), Photochromic behavior of several new synthesized bis 1, 3 diazabicyclo[3.1.0]hex 3 enes. J. Phys. Org. Chem. 22: 559-567.
[23] Mahmoodi N. O., Kiyani H., Tabatabaeian K., Zanjanchi M. A., (2009), Synthesis and photochromism of 1,3-diazabicyclo[3.1.0] hex-3-ene phenol rings. Mendeleev Commun. 19: 203-205.
[24] Mahmoodi N. O., Kiyani H., Tabatabaeian K., Zanjanchi M. A., Arvand M., Sharifzadeh B., (2010), NMR structural elucidation and photochromic behavior of new 1,3-diazabicyclo[3.1.0]hex-3-ene derivatives. Russ. J. Org. Chem. 46: 884-889.
[25] Mahmoodi N. O., Parvizi J., Sharifzadeh B., Rassa M., (2013), Facile regioselective synthesis of novel bis-thiazole derivatives and their antimicrobial activity. Arch. Pharm. Chem. Life. Sci. 346: 1207-1213.
[26] Mahmoodi N. O., Rineh A., Abdollahi M., Foroumadi A., Sorkhi M., Shafiee A., (2007), Synthesis, analgesic and anti-inflammatory activity of 4-(2-phenoxyphenyl)semicarbazones. Arch. Pharm. Chem. Life. Sci. 340: 409-415.
[27] Mahmoodi N. O., Safari N., Sharifzadeh B., (2014), One-pot synthesis of novel 2-(thiazol-2-yl)-4,5-dihydropyridazin-3(2H)-one derivatives catalyzed by activated KSF. Synth. Comm. 44: 245-250.
[28] Sharifzadeh B., Mahmoodi N. O., Mamaghani M., Tabatabaeian K., Salimi-Chirani A.,  Nikokar I., (2013), Facile regioselective synthesis of novel bioactive thiazolyl-pyrazoline derivatives via a three-component reaction and their antimicrobial activity. Bioorg. Med. Chem. Lett. 23: 548-551.
[29] Mahmoodi N. O., Shoja S., Sharifzadeh B., Rassa M., (2014), Regioselective synthesis and antibacterial evaluation of novel bis-pyrimidine derivatives via a three-component reaction. Med. Chem. Res. 23: 1207-1213.
[30] Mahmoodi N. O., Yazdanbakhsh M. R., Kiyani H., Sharifzadeh B., (2007), Synthesis and photochromic properties of new heterocyclic derivatives of 1,3 diazabicyclo[3.1.0] hex 3 ene. J. Chin. Chem. Soc. 54: 635-641.
[31] Mahmoodi N. O., Zanjanchi M. A., Kiyani H., (2004), Photochromism of several synthesised 1,3-diazabicyclo [3,1,0]hex-3-ene derivatives. J. Chem. Res. 6: 438-440.
[32] Kun R., Mogyorosi K., Dekany I., (2006), Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites. Appl. Clay Sci. 32: 99-110.
[33] Davoodnia A., (2011), A highly efficient and fast method for the synthesis of biscoumarins using tetrabutylammoniumhexatungstate [TBA]2[W6O19] as green and reusable heterogeneous catalyst. Bull. Korean Chem. Soc. 32: 4286-4290.
[34] Padalkar V., Phatangare K., Takale S., Pisal R., Chaskar A., (2012), Silica supported sodium hydrogen sulfate and indion 190 resin: an efficient and heterogeneous catalyst for facile synthesis of bis-(4-hydroxycoumarin-3-yl) methanes. J. Saudi. Chem. Soc. 56: 2368-2371.