A review on Carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions

Document Type: Review


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Chemistry, Payame Noor University, Zanjan, Iran.



Carbon nanotubes (CNTs) are a novel material that exhibits good adsorption behavior toward various toxic pollutants in aqueous solution. These adsorbents have a fast adsorption rate and high adsorption efficiency, efficient to remove various pollutants and they are easy to recover and reuse. These features highlight the suitability of CNTs for the treatment of water polluted with heavy metal ions and dyes. This review outlines the preparation of CNTs as well as different methods of surface modification of these materials by non-covalent and covalent functionalization strategies. Additionally, an overview of recent developments and applications of CNTs for heavy metal ions and dyes pollutant removal is discussed in detail. Based on current research and existing materials, some new and futuristic approaches in this fascinating area are also discussed. The main objective of this review is to provide up-to-date information about the most important features of CNTs and to show their advantages as adsorbents in the treatment of polluted aqueous solutions.


Main Subjects

[1] Gupta V. K., (2009), Application of low-cost adsorbents for dye removal–A review. J. Environ. Manage. 90: 2313-2342.
[2] Gupta V. K., Sadegh H., Yari M., Shahryari Ghoshekandi R., Maazinejad B., Chahardori M., (2015), Removal of ammonium ions from wastewater: A short review in development of efficient methods. Global J. Environ. Sci. Manage. 1: 149-158.
[3] Sadegh H., Shahryari-ghoshekandi R., Tyagi I., Agarwal S., Gupta, V. K., (2015), Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA). J. Mol. Liq. 207: 21-27.
[4] Zare K., Sadegh H., Shahryari-ghoshekandi R., Asif M., Tyagi I., Agarwal S., Gupta, V. K., (2016), Equilibrium and kinetic study of ammonium ion adsorption by Fe3O4 nanoparticles from aqueous solutions. J. Mol. Liq. 213: 345-350.
[5] Gupta V. K., Tyagi I., Sadegh H., Shahryari-Ghoshekandi R., Makhlouf A. S. H.,  Maazinejad B., (2015), Nanoparticles as Adsorbent; A Positive Approach for Removal of Noxious Metal Ions: A Review. Sci. Technol. Dev., 34: 195-214
[6] Babel S., Kurniawan T. A., (2003), Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97: 219-243.                                                                                                                [7] Gupta V. K.,Tyagi I., Agarwal S., Sadegh H., Shahryari-ghoshekandi R., Yari M., Yousefi-nejat O., (2015), Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J. Mol. Liq. 206: 129-136.þ
[8] Bansal R. C., Goyal M., (2005), Activated carbon adsorption. CRC press.
[9] Flick D. F., Kraybill H. F., Dlmitroff J. M., (1971), Toxic effects of cadmium: A review. Environ. Res. 4: 71-85.
[10] Khlifi R., Hamza-Chaffai A., (2010), Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicol. Appl. Pharmacol. 248: 71-88.
[11] Ernhart C. B., (1992), A critical review of low-level prenatal lead exposure in the human: 1. Effects on the fetus and newborn. Reprod. Toxicol. 6: 9-19.
[12] Moradi O., Sadegh H., Shahryari-ghoshekandi R., (2014), Adsorption and desorption in carbon nanotubes, discovery and evolution. Lambert Academic Publishing, Germany.
[13] Abdel Ghafar H. H., Ali G. A., Fouad O. A., Makhlouf S. A., (2015), Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalin. Water Treat. 53: 2980-2989.
[14] Gupta V. K., Tyagi I., Agarwal S., Moradi O., Sadegh H., Shahryari-Ghoshekandi R., Garshasbi A., (2015), Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification-A review. Crit. Rev. Environ. Sci. Technol.  15: 1-26.
[15] Zare K., Gupta V. K., Moradi O., Makhlouf A. S. H., Sillanpää M., Nadagouda M. N., Sadegh H., Shahryari-ghoshekandi R., Pal A., Wang Z., Tyagi I.,  Kazemi M., (2015), A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: A review. J. Nanostruct. Chem. 5: 227-236.
[16] Moradi O., Gupta V. K., Agarwal S., Tyagi I., Asif M., Makhlouf A. S. H., Sadegh H., Shahryari-ghoshekandi R., (2015), Characteristics and electrical conductivity of graphene and graphene oxide for adsorption of cationic dyes from liquids: Kinetic and thermodynamic study. J. Ind. Eng. Chem. 28: 294-301.
[17] Rao M. M., Ramesh A., Rao G. P. C., Seshaiah K., (2006), Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. 129: 123-129.
[18] Biskup B., Subotic B., (2004), Removal of heavy metal ions from solutions using zeolites (III) Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Sep. Sci. Technol. 39: 925-940.
[19] Zare K., Sadegh H., Shahryari-ghoshekandi R., Maazinejad B., Ali V., Tyagi I., Agarwal S., Gupta V. K., (2015), Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. J. Mol. Liq. 212: 266-271.
[20] Sadegh H., Shahryari-ghoshekandi R., Agarwal S., Tyagi I., Asif M., Gupta V. K., (2015), Microwave-assisted removal of malachite green by carboxylate functionalized multi-walled carbon nanotubes: Kinetics and equilibrium study. J. Mol. Liq. 206: 151-158.
[21] Thakur V. K., Thakur M. K., (2015), Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications. CRC Press.
[22] Shahryari-ghoshekandi R., Sadegh H., (2014), Kinetic study of the adsorption of synthetic dyes on graphene surfaces. Jordan J. Chem. 9: 267-278.þ
[23] Sadegh H., Yari M., Shahryari-ghoshekandi R., Ebrahimiasl S., Maazinejad B., Jalili M.,  Chahardori M., (2014),  Dioxins: A review of its environmental risk. Pyrex J. 2035-2789.
[24] Rajabi M., Mirza B., Mahanpoor K., Mirjalili M., Najafi F., Moradi O., Sadegh H., Shahryari-ghoshekandi R., Asif M., Tyagi I., Agarwal S., Gupta V. K.,(2015), Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. J. Ind. Eng. Chem. 175: 635-641.
[25] Arias M., Barral M. T., Mejuto J. C., (2002), Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere. 48: 1081-1088.
[26] Iijima S., (1991), Helical Microtubules of Graphitic Carbon. Nature. 354: 56-58.
[27] Ouyang M., Huang J. L., Lieber C. M., (2002), One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 88: 066804.
[28] Zare K., Najafi F., Sadegh H., Shahryari ghoshekandi R., (2013), Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J. Nanostruct. Chem. 3: 1-8.
[29] Sadegh H., Shahryari-ghoshekandi R., Kazemi M., (2014), Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int. Nano Lett. 3: 1-7.
[30] Sadegh H., Shahryari-ghoshekandi R., (2015), Functionalization of carbon nanotubes and its application in nanomedicine: A review. Nanomed. J. 2: 231-248.
[31] Wan X., Dong J., Xing D. Y., (1998), Optical properties of carbon nanotubes. Phys. Rev. B. 58: 6756-6759.
[32] Lu C., Chiu H.,(2006), Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61: 1138-1145.
[33] Lu C., Chiu H., Liu C., (2006), Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45: 2850-2855.
[34] Moradi O., Sadegh H., Shahryari-Ghoshekandi R., Norouzi M., (2015), Application of carbon nanotubes in nanomedicine: new medical approach for tomorrow. Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine. Chem. and Engineering. 11: 90-128.þ
[35] Stafiej A., Pyrzynska K., (2007), Adsorption of heavy metal ions with carbon nanotubes. Sep. Puri. Tech. 58: 49-52.
[36] Majlesi K., Zare K, Teimouri F., (2004), Dependence on ionic strength of formation constants, protonation, and complexation of nitrilotriacetic acid with tungsten (VI) in sodium perchlorate aqueous solution. J. Chem. Eng. Data. 49: 439-443.
[37] Li Y. H., Zhu Y., Zhao Y., Wu D., Luan Z. (2006). Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diam. Relat. Mater. 15: 90-94.
[38] Peng X., Luan Z., Di Z., Zhang Z., Zhu, C., (2005), Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water. Carbon. 43: 880-883.
[39] Robati D., (2013), Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 3: 1-6.
[40] Saadi Z., Saadi R., Fazaeli R., (2013), Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured ã-alumina. J. Nanostruct. Chem. 3: 1-8.
[41] Chen C., Wang X., (2006), Adsorption of Ni (II) from aqueous solution usingoxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45: 9144-9149.
[42] Li H. Y., Luan Z., Xiao X., Zhou X., Xu C., Wu D., Wei B., (2003), Removal Cu2+ ions from aqueous solutions by carbon nanotubes. Adsorp. Sci. Technol. 21: 475-485.
[43] Farghali A. A., Bahgat M., ElRouby W. M., Khedr M. H., (2013), Decoration of multi-walled carbon nanotubes (MWCNTs) with different ferrite nanoparticles and its use as an adsorbent. J. Nanostruc. Chem. 3: 1-12.
[44] Mehrizad A., Aghaie M., Gharbani P., Dastmalchi S., Monajjemi M., Zare K., (2012), Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iran J. Environ. Health. Sci. Eng. 9: 5-11.
[45] Chen C., Li X., Zhao D., Tan X., Wang X., (2007), Adsorption kinetic, thermodynamic and desorption studies of Th (IV) on oxidized multi-wall carbon nanotubes. Colloids Surf., A. 302: 449-454.
[46] Tuzen M., Soylak M., (2007), Multiwalled carbon nanotubes for speciation ofchromium in environmental samples. J. Hazard. Mater. 147: 219-225.
[47] Anna S., Pyrzynska K., (2007), Adsorption of heavy metal ions with carbon nanotubes. Sep. Pur. Tech. 58: 49-52.
[48] Zhang J., Lee J. K., Wu Y., Murray R. W., (2003), Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 3: 403-407.
[49] Curran S. A., Cech J., Zhang D., Dewald J. L., Avadhanula A., Kandadai M., Roth S., (2006), Thiolation of carbon nanotubes and sidewall functionalization. J. Mater. Res. 21: 1012-1018.
[50] Reddy D. H. K., Lee S. M., (2013), Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 201: 68-93.
[51] Sadjadi M. S., Farhadyar N., Zare K., (2009), Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices Microstruct. 46: 266-271.
[52] Gupta V. K., Agarwal S., Saleh T. A., (2011), Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185: 17-23.
[53] Yao Y., Xu F., Chen M., Xu Z., Zhu, Z., (2010), Adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 101: 3040-3046.
[54] Yang S. T., Chen S., Chang Y., Cao A., Liu Y., Wang H., (2011), Removal of methylene blue from aqueous solution by graphene oxide. J. Colloid Interface Sci. 359: 24-29.
[55] Saleh T. A., Gupta V. K., (2012), Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res. 19: 1224-1228.
[56] Zare F., Ghaedi M., Daneshfar A., Agarwal S., Tyagi I., Saleh T. A., Gupta V. K., (2015), Efficient removal of radioactive uranium from solvent phase using AgOH–MWCNTs nanoparticles: Kinetic and thermodynamic study. Chem. Eng. J. 273: 296-306.
[57] Pearce J. V., Adams M. A., Vilches O. E., Johnson M. R., Glyde H. R., (2005), One-dimensional and two-dimensional quantum systems on carbon nanotube bundles. Phys. Rev. Lett. 95: 185302-9.
[58] Bienfait M., Zeppenfeld P., Dupont-Pavlovsky N., Muris M., Johnson M. R., Wilson T., Vilches O. E., (2004), Thermodynamics and structure of hydrogen, methane, argon, oxygen, and carbon dioxide adsorbed on single-wall carbon nanotube bundles. Phys. Rev. B. 70: 035410.
[59] Mackie E. B., Wolfson R. A., Arnold L. M., Lafdi K., Migone A. D., (1997), Adsorption studies of methane films on catalytic carbon
 nanotubes and on carbon filaments. Langmuir. 13: 7197-7201.
[60] Li Y. H., Wang S., Wei J., Zhang X., Xu C., Luan Z., Wei B., (2002), Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357: 263-266.
[61] Shim J. W., Park S. J., Ryu S. K., (2001), Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon. 39: 1635-1642.
[62] Long R. Q., Yang R. T., (2001), Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 123: 2058-2059.
[63] Wu C. H., (2007), Studies of the equilibrium and thermodynamics of the adsorption of Cu2+onto as-produced and modified carbon nanotubes. J. Coll. Interf. Sci. 311: 338-346.
[64] Kandah M. I., Meunier J. L., (2007), Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146: 283-288.
[65] Chen C., Hu J., Shao D., Li J., Wang X., (2009), Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J. Hazard. Mater. 164: 923-928.
[66] Mickelson E. T., Chiang I. W., Zimmerman J. L., Boul P. J., Lozano J., Liu J., Margrave J. L., (1999), Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B. 103: 4318-4322.
[67] Holzinger M., Vostrowsky O., Hirsch A., Hennrich F., Kappes M., Weiss R., Jellen, F., (2001), Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. 40: 4002-4005.
[68] Chen Y., Haddon R. C., Fang S., Rao A. M., Eklund P. C., Lee W. H., Smalley R. E., (1998), Chemical attachment of organic functional groups to single-walled carbon nanotube material. J. Mater. Res. 13: 2423-2431.
[69] Atieh M. A., (2011), Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon. Proc. Env. Sci. 4: 281-293.
[70] Hsieh S. H., Horng J. J., Tsai C. K., (2006), Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. J. Mater. Res. 21: 1269-1273.
[71] Lin D. H., Xing B. S., (2008), Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Env. Sci. Tech. 42: 7254-7259.
[72] Peng X., Li Y., Luan Z., Di Z., Wang H., Tian B., Jia Z., (2003), Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 376: 154-158.
[73] Tofighy M. A., Mohammadi T., (2011), Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185: 140-147.
[74] Yang S., Li J., Shao D., Hu J., Wang X., (2009), Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166: 109-116.
[75] Gao Z., Bandosz T. J., Zhao Z., Han M., Qiu J., (2009), Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167: 357-365.
[76] Lu C., Liu C., (2006), Removal of nickel (II) from aqueous solution by carbon nanotubes. J. Chem. Technol. Biotechnol. 81: 1932-1940.
[77] Lu C., Liu C., Rao G. P., (2008), Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon 151: 239-246.
[78] Lu C., Liu C., Su F., (2009), Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes. Desalination. 249: 18-23.
[79] Rosli F., (2011), Statistical analaysis for removal of cadmium from aqueous solution at high pH. Aust. J. Basic Appl. Sci. 5: 440-446.
[80] Vukoviæ G. D., Marinkoviæ A. D., Èoliæ M., Ristiæ M. Ð., Aleksiæ R., Periæ-Grujiæ A. A., Uskokoviæ P. S., (2010), Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 157: 238-248.
[81] Li Y. H., Ding J., Luan Z., Di Z., Zhu Y., Xu C., Wei B., (2003), Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 41: 2787-2792.
[82] Wang H., Zhou A., Peng F., Yu H., Yang J., (2007), Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II). J. Colloid Interface Sci. 316: 277-283.
[83] Xu D., Tan X., Chen C., Wang X., (2008), Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotube. J. Hazard. Mater. 154: 407-416.
[84] Li Y. H., Di Z., Ding J., Wu D., Luan Z, Zhu Y., (2005), Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39: 605-609.
[85] Pan B., Xing B. S., (2008), Adsorption mechanisms of organic chemicals on carbon nanotubes. Env. Sci. Tech. 42: 9005-9013.
[86] Cho H. H., Wepasnick K., Smith B. A., Bangash F. K., Fairbrother D. H., Ball W. P., (2009), Sorption of aqueous Zn [II] and Cd [II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir. 26: 967-981.
[87] Khani H., Moradi O., (2013), Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J. Nanostruct. Chem. 3: 73-78.
[88] Rosenzweig S., Sorial G. A., Sahle-Demessie E., Mack J., (2013), Effect of acid and alcohol network forces within functionalized multiwall carbon nanotubes bundles on adsorption of copper (II) species. Chemosphere. 90: 395-402.
[89] Bahr J. L., Mickelson E. T., Bronikowski M. J., Smalley R. E., Tour J. M., (2001), Dissolution of small diameter single-wall carbon nanotubes in organic solvents?. Chem. Commun. 2: 193-194.
[90] Chen R. J., Zhang Y., Wang D., Dai, H., (2001), Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123: 3838-3839.
[91] Islam M. F., Rojas E., Bergey D. M., Johnson A. T., Yodh A. G., (2003), High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano lett. 3: 269-273.
[92] Richard C., Balavoine F., Schultz P., Ebbesen T. W., Mioskowski C., (2003), Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science. 300: 775-778.
[93] O’connell M. J., Bachilo S. M., Huffman C. B., Moore V. C., Strano M. S., Haroz E. H., Smalley R. E., (2002), Band gap fluorescence from individual single-walled carbon nanotubes. Science. 297: 593-596.
[94] Moore V. C., Strano M. S., Haroz E. H., Hauge R. H., Smalley R. E., Schmidt J., Talmon, Y., (2003), Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3: 1379-1382.
[95] Bachilo S. M., Strano M. S., Kittrell C., Hauge R. H., Smalley R. E., Weisman R. B., (2002), Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 298: 2361-2366.
[96] Hagen A., Hertel T., (2003), Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett. 3: 383-388.
[97] Zorbas V., Ortiz-Acevedo A., Dalton A. B., Yoshida M. M., Dieckmann G. R., Draper R. K., Musselman I. H., (2004), Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc.126: 7222-7227.
[98] Zorbas V., Smith A. L., Xie H., Ortiz-Acevedo A., Dalton A. B., Dieckmann G. R., Musselman I. H., (2005), Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J. Am. Chem. Soc. 127: 12323-12328.
[99] Kam N. W. S., Dai H., (2005), Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127: 6021-6026.
[100] Zheng M., Jagota A., Strano M. S., Santos A. P., Barone P., Chou S. G., Walls D. J., (2003), Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science. 302: 1545-1548.
[101] Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C., Haddon R. C., (1998), Solution properties of single-walled carbon nanotubes. Science. 282: 95-98.
[102] Liu J., Rinzler A. G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., Smalley R. E., (1998), Fullerene pipes. Science. 280: 1253-1256.
[103] Pompeo F., Resasco D. E., (2002), Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett. 2: 369-373.
[104] Chiu P. W., Duesberg G. S., Dettlaff-Weglikowska U., Roth S., (2002), Interconnection of carbon nanotubes by chemical functionalization. Appl. Phys. Lett. 80: 3811-3813.
[105] Bahr J. L., Tour J. M., (2002), Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12: 1952-1958.
[106] Ruparelia J. P., Duttagupta S. P., Chatterjee A. K., Mukherji S. O. U. M. Y. A., (2008), Potential of carbon nanomaterials for removal of heavy metals from water. Desalination. 232: 145-156.
[107] Rao G. P., Lu C., Su F., (2007), Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep. Pur. Tech. 58: 224-231.
[108] Zhou W., Islam M. F., Wang H., Ho D. L., Yodh A. G., Winey K. I., Fischer J. E., (2004), Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks. Chem. Phys. Lett. 384: 185-189.
[109] Herrero M. A., Prato M., (2008), Recent advances in the covalent functionalization of carbon nanotubes. Mol. Crys. Liq. Crys. 438: 21-32.
[110] Kim E. S., Liu Y., El-Din M. G., (2013), An in-situ integrated system of carbon nanotubes nanocomposite membrane for oil sands process-affected water treatment. J. Membr. Sci. 429: 418-427.
[111] Yang W., Ding P., Zhou L., Yu J., Chen X., Jiao F., (2013), Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Appl. Surf. Sci. 282: 38-45.
[112] Ghaedi M., Haghdoust S., Kokhdan S. N., Mihandoost A., Sahraie R., Daneshfar A., (2012), Comparison of activated carbon, multiwalled carbon nanotubes, and cadmium hydroxide nanowire loaded on activated carbon as adsorbents for kinetic and equilibrium study of removal of Safranine O. Spectrosc. Lett. 45: 500-510.
[113] Bahgat M., Farghali A. A., El Rouby W. M. A., Khedr M. H., (2011), Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J. Anal. Appl. Pyrolysis. 92: 307-313.
[114] Ghaedi M., Hassanzadeh A., Kokhdan S. N., (2011), Multiwalled carbon nanotubes as adsorbents for the kinetic and equilibrium study of the removal of alizarin red S and morin. J. Chem. Eng. Data. 56: 2511-2520.
[115] Ghaedi M., Shokrollahi A., Hossainian H., Kokhdan S. N.,(2011), Comparison of activated carbon and multiwalled carbon nanotubes for efficient removal of eriochrome cyanine R (ECR): Kinetic, isotherm, and thermodynamic study of the removal process. J. Chem. Eng. Data. 56: 3227-3235.
[116] Ghaedi M., Shokrollahi A., Tavallali H., Shojaiepoor F., Keshavarz B., Hossainian H., Purkait M. K., (2011), Activated carbon and multiwalled carbon nanotubes as efficient adsorbents for removal of arsenazo(III) and methyl red from waste water. Toxicol. Environ. Chem. 93: 438-449.
[117] Shu-wan H., Wen-jun L., Zhi-dong C., Huan-ying W., Hui-chao G., Jing-hua Z., Yang, L., (2011), Removal of Methyl Orange from Aqueous Solution by Magnetic Carbon Nanotubes.. Spectrosc. Spect. Anal. 31: 205-209.
[118] Machado F. M., Bergmann C. P., Fernandes T. H., Lima E. C., Royer B., Calvete T., Fagan S. B., (2011), Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J. Hazard. Mater. 192: 1122-1131.
[119] Wu C. H., (2007), Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 144: 93-100.
[120] Ghaedi M., Kokhdan S.N., (2012), Oxidized multi walled carbon nanotubes for the removal of methyl red (MR): kinetics and equilibrium study. Desalin. Water Treat. 49: 317-325.
[121] Ghaedi M., Khajehsharifi H., Yadkuri A.H., Roosta M., Asghari A., (2012), Oxidized multiwalled carbon nanotubes as efficient adsorbent for bromothymol blue. Toxicol. Environ. Chem. 94: 873-83.
[122] Chatterjee S., Lee M.W., Woo S.H., (2010), Adsorption of Congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour. Technol. 101: 1800-1806.
[123] Chatterjee S., Chatterjee T., Lim S. R., Woo S. H., (2011), Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core–shell beads on adsorption of Congo red from aqueous solution. Bioresour. Technol. 102: 4402-4409.
[124] Bina B., Amin M.M., Rashidi A., Pourzamani H., (2012), Benzene and toluene removal by carbon nanotubes from aqueous solution. Arch. Environ. Prot. 38: 3-25.
[125] Nadafi K., Mesdaghinia A., Nabizadeh R., Younesian M., Rad M.J., (2011), The combination and optimization study on RB29 dye removal from water by peroxy acid and singlewall carbon nanotubes. Desalin. Water Treat. 27: 237-242.
[126] Ai L.H., Jiang J., (2012), Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid. Chem. Eng. J. 192:156-63.
[127] Zeng Y., Zhao L.J., Wu W.D., Lu G.X., Xu F., Tong Y., (2013), Enhanced adsorption of malachite green onto carbon nanotube/polyaniline composites. J. Appl. Polym. Sci. 127: 2475-2482.