Synthesis and characterization of functionalized single - walled carbon nanotube/ chitosan/polyaniline nanocomposite

Document Type: Reasearch Paper

Authors

Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

10.7508/ijnd.2016.01.003

Abstract

In this work the synthesis of polyaniline/chitosan/functionalized single- walled carbon nanotube nanocomposite is carried out. For this purpose single -walled carbon nanotubes were reacted with thionyl chloride to change the hydroxyl to acyl chloride groups for improving the react ability. In other step, aniline monomers and chitosan were polymerized in the presence of Iron (III) chloride to synthesize the chitaline copolymer. The synthesized chitaline then reacted with functionalized single- walled carbon nanotube to prepare chitaline-single walled carbon nanotube nanocomposite. The synthesized nanocomposite was also characterized to evaluate the structure and morphology by Fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermo gravimetric analysis (TGA). The results showed that the formation of the composite in nano scale can be good carbon materials with high adsorption capacity in porous surfaces for improving the properties as a good candidate such as nano bio filter for removing the organic and inorganic wastes from water.

Keywords

Main Subjects


[1] Jalili S., Rafii-Tabar R., (2005), Electronic conductance through organic nanowires. Int. J. Nano Dimens. 71: 410- 419.

[2]  Kofuji K., Qian C. J., Nishimura M., Sugiyama I., Murata Y., Kawashima S., (2005), Physicochemical characteristics and functional properties of chitosan. Eur. Polym. J. 41: 2784-91.

[3]  Xie W. M., Xu P. X.,Wang W., Lu Q., (2001), Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem. Lett. 11: 1699-1704.

[4]  Zhang M. G., Smith A., Gorski W., (2007), Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76: 5045-5050.

[5]  Razak. S. I. A., Ahmad A. L., Zein S. H. S., (2009), Polymerization of protonic polyaniline/multiwalled carbon nanotubes-maganese dioxide nanocomposites. J. Phys. Sci. 20: 27-34.

[6]  Qui H. J., Wan M. X.., (2001) , Nanostructures of polyaniline doped with a novel dopant. Mater. Phys. Mech. 4: 125-128.

[7]  Yang. S, Tirmizi. S. A., Burns A., Barney A. A., Risen W. M., (1989), Chilatine materials: soluble chitosanpolyaniline copolymers and their conductive doped forms. Synth. Metals. 32: 191-200.

[8]  Liu L., Li Y., Liu H., Fang Y., (2004), Synthesis and characterization of chitosan-graft polycaprolactone copolymers. Eur. Polym. J. 40: 2739-2744.

[9]  Harrison B. S., Atala A., (2007), Carbon nanotubes applications for tissue engineering. Biomaterials. 28: 344-353.

[10] Hill D. E., Lin Y., Rao A. M., Allard L. F., Sun Y. P., (2002), Functionalization of carbon nanotubes with polystyrene.: Macromolecules. 35: 9466-9471.

[11] Li H., Cheng F. Y., Duft A. M., Adronov A., (2005), Functionalization of single-walled carbon nanotubes with well-defined polystyrene by .click. coupling. J. Am. Chem. Soc. 127: 14518-14524.

[12] Huang W., Lin Y., Taylor S., Gaillard J., Rao A. M., Sun Y. P., (2002) , Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett. 2: 231-236.

[13] Ash D. B., Sathapathy S., Dash M. P., Nayak P. L., (2012), synthesis and nancharacterization of multiwalled carbonnanotube/ poly (paraaminophenol) Composites. Int. J. Pharm. Res. Alliedscie. 14: 29-34.

[14] Coleman J. N., Khan U., Blau W. J., Gun.ko Y. K.., (2006), Small but strong: A review of the mechanical poperties of carbon nanotube.polymer composites. Carbon. 44: 1624-1652.

[15] Lai P. L., Chen S. C., Lin M. F., ( 2008), Electronic roperties of single-walled carbon nanotubes under electric and magnetic fields.: Physica E: Low-dimens. Sys. Nanostruc. 40: 2056-2058.

[16] Xu Z. A., Gao N., Chen H. J., Dong S. J., (2005), Biopolymer and carbon nanotubes interface prepared by selfassembly fr studying the electrochemistry of microperoxidase-11. Langmuir. 21: 10808-10813.

[17 Liu Y., Tang J., Chen X. Q., Xin J. H., (2005), Decoration of carbon nanotubes with chitosan. Carbon. 43: 3178-3180.

[18] Cao X., Dong H., Li C. M., Lucia L. A., (2009), The enhanced mechanical properties of a covalently bound chitosan-multiwalled carbon nanotube nanocomposite. J. Appl. Polym. Sci. 113: 466-472.

[19] Wang S., Shen L., Zhang W., Tong Y., (2005), Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol. 6: 3067-3072.

[20] Gang Ke., Wenchao G., Changyu T., Wenjie G., Danlin Z., Feng D., (2007), Covalent Functionalization of Multiwalled Carbon Nanotubes with a Low Molecular Weight Chitosan. Biomacromol. 8: 322-328.

[21] Umakanta S., Mira D., Nayak P. L., (2013), Synthesis and Characterization of Graft Copolymerized of Methacrylicacid (MAA) onto Chitosan on Single Walled Carbon Nanotube. Int. J. Res. in Pharmac. Biomedi. Sci. 4: 486-492.